YOLOX训练自己的数据集(头铁出来的超详细教程)

2024-02-14 00:59

本文主要是介绍YOLOX训练自己的数据集(头铁出来的超详细教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里写自定义目录标题

  • 1.YOLOX环境搭建
    • 1.1新建一个conda环境
    • 1.2安装代码依赖的库文件
    • 1.3通过setup.py安装一些库文件
    • 1.4下载apex文件
    • 1.4下载pycocotools
  • 2.创建自己的数据集
    • 2.1创建VOC格式数据集
  • 3.训练
    • 3.1修改文件代码
    • 3.2开始训练
  • 3.测试
    • 3.1测试自己的训练结果
  • 3.预测结果
      • 参考(侵删)

1.YOLOX环境搭建

首先,搭建YOLOX所需要的环境。这里我使用Anaconda来搭建的。在搭建环境之前,先附上YOLOX的官方代码: 官方代码链接.

1.1新建一个conda环境

conda create -n yolox python=3.8
conda activate yolox   //进入环境

如果你想用原有的环境来搭建,也ok,直接激活你的环境。

1.2安装代码依赖的库文件

用到你下载好的官方文件,在命令行中

cd your/yolox-main/path
pip install -r requirements.txt

1.3通过setup.py安装一些库文件

python3 setup.py develop

1.4下载apex文件

apex下载链接.
下载好后cd到文件夹中并安装

cd path/to/your/apex
python3 setup.py install

安装成功后会显示
在这里插入图片描述

1.4下载pycocotools

pip3 install cython
pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

2.创建自己的数据集

2.1创建VOC格式数据集

yolox可以跑两种格式的数据集voc和coco,这里我用voc举例。
yolox的预训练模型 下载地址.我用yolox-s.pth举例
在这里插入图片描述
这是目录格式要求,可以自己手动建立。

其中,annotation用于存放xml格式的标签文件,JPEGimage用于存放原始图片。ImageSets/Main下的两个文件可以根据代码建立。

# oding = utf-8
# -*- coding:utf-8 -*-
import os
import randomtrainval_percent = 0.1
train_percent = 0.9
xmlfilepath = r'E:\YOLOX-main\datasets\VOCdevkit\VOC2007\Annotations'
txtsavepath = r'E:\YOLOX-main\datasets\VOCdevkit\VOC2007\ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftest = open(r'E:\YOLOX-main\datasets\VOCdevkit\VOC2007\ImageSets\Main\test.txt', 'w')
ftrain = open(r'\YOLOX-main\datasets\VOCdevkit\VOC2007\ImageSets\Main\trainval.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftest.write(name)else:ftrain.write(name)ftrain.close()
ftest.close()

运行此代码后会出现两个.txt文件。

3.训练

3.1修改文件代码

修改 yolox/data/dataloading.py

def get_yolox_datadir():"""get dataset dir of YOLOX. If environment variable named `YOLOX_DATADIR` is set,this function will return value of the environment variable. Otherwise, use data"""yolox_datadir = os.getenv("YOLOX_DATADIR", None)if yolox_datadir is None:import yoloxyolox_path = os.path.dirname(os.path.dirname(yolox.__file__))//修改这里yolox_datadir = os.path.join(yolox_path, "datasets")return yolox_datadir

其次,修改exps/example/yolox_voc/yolox_voc_s.py

class Exp(MyExp):def __init__(self):super(Exp, self).__init__()self.num_classes = 10 #修改类别数目self.depth = 0.33self.width = 0.50self.warmup_epochs = 1

然后,修改这里,这块复制就好了

        with wait_for_the_master(local_rank):dataset = VOCDetection(data_dir=os.path.join(get_yolox_datadir(), "VOCdevkit"),//修改这里image_sets=[('2007', 'trainval')],#, ('2012', 'trainval')img_size=self.input_size,preproc=TrainTransform(max_labels=50,flip_prob=self.flip_prob,hsv_prob=self.hsv_prob),cache=cache_img,)

修改yolox/data/datasets/voc_classes.py为自己的类别。

VOC_CLASSES = ('1','2','3','4','5','6','7','8','9','10',
)

最后,修改yolox/evaluators/voc_eval.py,添加root为annotation的绝对路径。

#修改yolox/evaluators/voc_eval.py,添加root为annotation的绝对路径。
root = r'E:\YOLOX-main\datasets\VOCdevkit\VOC2007\Annotations\\'
def parse_rec(filename):""" Parse a PASCAL VOC xml file """tree = ET.parse(root + filename)

3.2开始训练

超参数设置:

python tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 0 -b 4 --fp16  -c yolox_s.pth

在这里插入图片描述

在这里插入图片描述
如果训练中断,开启,resume

python3 tools/train.py -f exps/example/yolox_voc/yolox_voc_s.py -d 0 -b 64 -c <last_epoch_ckpt.pth的路径> --resume

3.测试

3.1测试自己的训练结果

修改yolox/data/datasets/下的init.py文件,添加:
from .voc_classes import VOC_CLASSES
在这里插入图片描述

之后在toos/demo.py文件中将COCO_CLASSES全部修改为VOC_CLASSES
直接在此文件find下COCO_CLASSES然后全部修改为VOC_CLASSES就好了。
在这里插入图片描述

python tools/demo.py image -f exps/example/yolox_voc/yolox_voc_s.py -c weights/best_ckpt.pth --path assets/class01.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]

-c 代表训练好的权重,-path 代表你要预测的图片存放的文件夹,
若想进行视频预测,只需将下面的 image 更换为 video;
若想预测整个文件夹,将.jpg去掉,只留 --path assets/

3.预测结果

跑了300个epoch训练了两个类,一个是飞机一个是油罐,感觉精度在280个epoch的时候明显上升,但是最终的结果不如v5好,不知道是因为我将.txt转xml出错了还是果真效果就是不太行,这个我还没分析。上图:
在这里插入图片描述
上图是yolox-s的效果,我人麻了……
在这里插入图片描述
上图是yolov5-x的效果。。。

好了我继续trick了,感兴趣的小伙伴来一起交流
持续更新中……

参考(侵删)

文献1.
文献2.
文献3.
文献4.

这篇关于YOLOX训练自己的数据集(头铁出来的超详细教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/707103

相关文章

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏