代码随想录算法训练营Day56|583. 两个字符串的删除操作、72. 编辑距离

本文主要是介绍代码随想录算法训练营Day56|583. 两个字符串的删除操作、72. 编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

583. 两个字符串的删除操作

前言

思路

算法实现 

法二

72. 编辑距离

前言

思路

算法实现 

总结


583. 两个字符串的删除操作

题目链接

文章链接

前言

        本题与上一题不同的子序列相比,变化就是两个字符串都可以进行删除操作了。

思路

         利用动规五部曲进行分析:

1.确定dp数组及其下标的含义:

        dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

2.确定递推公式:

        递推公式的推导与前几题大致类似,都有分两种情况进行讨论:

  • 当word1[i - 1] 与 word2[j - 1]相同的时候;
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

        对于word1[i - 1] 与 word2[j - 1]相同时,dp[i][j] = dp[i - 1][j - 1];

        当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

        情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1,

        情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1,

        情况三,同时删word1[i - 1]和word2[j - 1], 操作的最少次数为dp[i - 1][j - 1] + 2;

        最终结果是取三种情况的最小值,dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

3.初始化dp数组:

        从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

        当word2为空字符串时,word1字符串的长度为i,因此要删i次才能与空字符串word2相等,所以dp[i][0]的初值为i,同理dp[0][j]的初值为j;

4.确定遍历顺序:

        从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

        所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

5.打印dp数组:

        以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

算法实现 

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int> (word2.size() + 1, 0));for (int i = 1; i <= word1.size(); i++) dp[i][0] = i;for (int j = 1; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];else {dp[i][j] = min(dp[i - 1][j] + 1, min(dp[i][j - 1] + 1, dp[i - 1][j - 1] + 2));}}}return dp[word1.size()][word2.size()];}
};

法二

        利用求最长公共子序列的思想,两个字符串要删除的部分就是最长公共子序列之外的部分。

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int> (word2.size() + 1, 0));for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}return word1.size() + word2.size() - dp[word1.size()][word2.size()] * 2;}
};

72. 编辑距离

题目链接

文章链接

前言

         前几题都是为了本题做铺垫,有了前面几题的学习接触本题就不会觉得非常困难,主要难点还是在于递推公式的确定,尤其是当两个字符串比较的位置字符不相等时递推公式的确定。

思路

         还是利用动规五部曲进行分析:

1.确定dp数组及其下标的含义:

        dp[i][j]:以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

2.确定递推公式:

        依然是分两种大情况进行讨论:

  • 当word1[i - 1] 与 word2[j - 1]相同;
  • 当word1[i - 1] 与 word2[j - 1]不相同;

        当word1[i - 1] 与 word2[j - 1]相同时,不需要进行额外的操作(编辑距离),和word1以i - 2为结尾,word2以就j - 2为结尾要操作的次数一样,即dp[i][j] = dp[i - 1][j - 1];

        而当word1[i - 1] 与 word2[j - 1]不相同时,要分别考虑删、增、换三种不同的情况;

        增删元素其实本质上是一样的,在word1中增加元素和在word2中删除元素起到的效果相同,此时dp[i][j] = dp[i - 1][j] + 1(删word1中的元素),或者dp[i][j] = dp[i][j - 1] + 1(删除word2中的元素);

        替换元素时,替换word[i - 1]元素使其与word2[j - 1]相等(也可以倒过来),此时dp[i][j] = dp[i - 1][j - 1] + 1;

3.dp数组初始化

        与上题一样dp[i][0] = i,dp[0][j] = j,只需要删除完所有字符就能与另一个空字符串相等;

4.确定遍历顺序:

        从递推公式可以看出,dp[i][j]是依赖左方,上方和左上方元素的,如图:

        

5.打印dp数组:

        以示例1为例,输入:word1 = "horse", word2 = "ros"为例,dp矩阵状态图如下:

         

算法实现 

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int> (word2.size() + 1, 0));for (int i = 1; i <= word1.size(); i++) dp[i][0] = i;for (int j = 1; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];else dp[i][j] = min(dp[i - 1][j] + 1, min(dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1));}}return dp[word1.size()][word2.size()];}
};

总结

        今天的两道题是前面几道题的深化,循序渐进。

这篇关于代码随想录算法训练营Day56|583. 两个字符串的删除操作、72. 编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/706818

相关文章

Java Stream流与使用操作指南

《JavaStream流与使用操作指南》Stream不是数据结构,而是一种高级的数据处理工具,允许你以声明式的方式处理数据集合,类似于SQL语句操作数据库,本文给大家介绍JavaStream流与使用... 目录一、什么是stream流二、创建stream流1.单列集合创建stream流2.双列集合创建str

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的