【深度学习】S1 预备知识 P2 数据预处理

2024-02-13 07:20

本文主要是介绍【深度学习】S1 预备知识 P2 数据预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 准备工作
  • 创建数据集
  • 读取数据集
  • 处理缺失值
    • 处理连续数据缺失值
    • 处理离散数据缺失值
  • 转换为张量格式

在应用深度学习技术解决实际问题时,数据的预处理步骤至关重要。在 Python 的各种数据分析工具中,我们选择了 pandas 库来进行这一工作,因为它能与张量兼容。在本篇博文中,我们将概述如何使用 pandas 对原始数据进行预处理,并将其转换成张量格式。


准备工作

本节博文通过调用 Python Pandas 库实现操作,需要读者预安装完成 Pandas 包:

conda install pandas
pip install pandas

创建数据集

如果读者没有初始数据集,可以通过 write 函数创建 csv 数据集。

import osos.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n')f.write('NA,Pave,127500\n')f.write('2,NA,106000\n')f.write('4,NA,178100\n')f.write('NA,NA,140000\n')

读取数据集

读取数据集,我们通过导入 pandas 并调用 read_csv 函数。上述数据集 house_tiny.csv 有四行三列,其中每行描述了房间数量 (NumRooms) ,巷子类型 (Alley) 以及房间价格 (Price);

import os
import pandas as pddata_file = os.path.join('..', 'data', 'house_tiny.csv')
data = pd.read_csv(data_file)
print(data)
   NumRooms Alley   Price
0       NaN  Pave  127500
1       2.0   NaN  106000
2       4.0   NaN  178100
3       NaN   NaN  140000

至此,我们已经成功读取到了数据集 house_tiny.csv 中的数据。然而在读取到的结果中,我们注意到存在大量的 NaN 值,这些值代表着数据的缺失。下面将阐述数据缺失的处理办法。


处理缺失值

处理数据缺失的常见方法包括插值法和数据删除法。在插值法中,我们会用一个估计的数值来填补缺失的数据,其中一种常见的插值策略是利用周围非缺失数据的平均值来估计缺失值。然而,处理连续数据和离散数据的缺失值时,我们需要采用不同的策略。

处理连续数据缺失值

首先,以及房间数量(NumRooms)为例,我们将利用周围非缺失数据的平均值来估计缺失值。在这里,我们使用 mean() 函数。

numRooms = data.iloc[:, 0]
print(numRooms)
numRooms = numRooms.fillna(numRooms.mean())
print(numRooms)
0    NaN
1    2.0
2    4.0
3    NaN
Name: NumRooms, dtype: float64
0    3.0
1    2.0
2    4.0
3    3.0
Name: NumRooms, dtype: float64

处理离散数据缺失值

在对离散数据处理缺失值时,我们将 NaN 视作一个独立的类别。以“巷子类型”(Alley)为例,这一列只有两种可能的值:“Pave” 和 NaN。

借助 pandas 库,我们可以把这个列拆分成两列:“Pave” 和 “NaN”。在拆分后的两列中,如果巷子类型是 “Pave”,那么 “Pave” 列的值为 1,而 “NaN” 列的值为 0 ;如果巷子类型是 NaN,则反之。

为了实现这一点,我们使用了 get_dummies() 函数,并通过设置 dummy_na 参数来决定是否创建一个代表 NaN 的额外列。

alley = data.iloc[:, 1]
print(alley)
alley = pd.get_dummies(alley, dummy_na=True)
print(alley)
0    Pave
1     NaN
2     NaN
3     NaN
Name: Alley, dtype: objectPave    NaN
0   True  False
1  False   True
2  False   True
3  False   True

如上,我们将数据集 house_tiny.csv 中缺失的连续数据(房间数量)、离散数据(巷子类型)处理完成。


转换为张量格式

在对数据集处理完缺失值后,我们将其转换成张量格式。

完整代码如下:

import os
import pandas as pd
import torchdata_file = os.path.join('..', 'data', 'house_tiny.csv')
data = pd.read_csv(data_file)inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
# print(inputs, outputs)
inputs['NumRooms'] = inputs['NumRooms'].fillna(inputs['NumRooms'].mean())
inputs['Alley'] = pd.get_dummies(inputs['Alley'], dummy_na=False)
# print(inputs)
X = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))\print(X)
print(y)
tensor([[3., 1.],[2., 0.],[4., 0.],[3., 0.]], dtype=torch.float64)
tensor([127500., 106000., 178100., 140000.], dtype=torch.float64)

至此,我们使用 pandas 对原始数据进行预处理,读取数据集,处理缺失值;最后,将其转换为张量格式。


此上,如有任何为题,请留言或者联系,谢谢~

2024.2.12

这篇关于【深度学习】S1 预备知识 P2 数据预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/704856

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速