【AI大模型应用开发】【LangChain系列】6. LangChain的Callbacks模块:监控调试程序的重要手段

本文主要是介绍【AI大模型应用开发】【LangChain系列】6. LangChain的Callbacks模块:监控调试程序的重要手段,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。

LangChain提供了一个回调系统,允许您挂接到LLM应用程序的各个阶段。这对于日志记录、监视、流式传输和其他任务非常有用。

0. LangChain Callbacks模块提供的Callback接口一览

class BaseCallbackHandler:"""Base callback handler that can be used to handle callbacks from langchain."""def on_llm_start(self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) -> Any:"""Run when LLM starts running."""def on_chat_model_start(self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) -> Any:"""Run when Chat Model starts running."""def on_llm_new_token(self, token: str, **kwargs: Any) -> Any:"""Run on new LLM token. Only available when streaming is enabled."""def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any:"""Run when LLM ends running."""def on_llm_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any:"""Run when LLM errors."""def on_chain_start(self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) -> Any:"""Run when chain starts running."""def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> Any:"""Run when chain ends running."""def on_chain_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any:"""Run when chain errors."""def on_tool_start(self, serialized: Dict[str, Any], input_str: str, **kwargs: Any) -> Any:"""Run when tool starts running."""def on_tool_end(self, output: str, **kwargs: Any) -> Any:"""Run when tool ends running."""def on_tool_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any:"""Run when tool errors."""def on_text(self, text: str, **kwargs: Any) -> Any:"""Run on arbitrary text."""def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:"""Run on agent action."""def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:"""Run on agent end."""

1. 最常用的Callback:StdOutCallbackHandler

StdOutCallbackHandler将所有事件的日志作为标准输出,打印到终端中。

注意: 当verbose参数设置为true时, StdOutCallbackHandler是被默认启用的,也就是你看到的它将运行过程的日志全部打印到了终端窗口中。

上示例:

from langchain.callbacks import StdOutCallbackHandler
from langchain.chains import LLMChain
from langchain_openai import OpenAI
from langchain.prompts import PromptTemplatehandler = StdOutCallbackHandler()
llm = OpenAI()
prompt = PromptTemplate.from_template("1 + {number} = ")# Constructor callback: First, let's explicitly set the StdOutCallbackHandler when initializing our chain
chain = LLMChain(llm=llm, prompt=prompt, callbacks=[handler])
chain.invoke({"number":2})# Use verbose flag: Then, let's use the `verbose` flag to achieve the same result
chain = LLMChain(llm=llm, prompt=prompt, verbose=True)
chain.invoke({"number":2})# Request callbacks: Finally, let's use the request `callbacks` to achieve the same result
chain = LLMChain(llm=llm, prompt=prompt)
chain.invoke({"number":2}, {"callbacks":[handler]})

输出:

在这里插入图片描述

对代码和运行结果的解释:

从运行结果可以看出,三次输出的结果相同。再看代码,用三种方式实现了StdOutCallbackHandler的设置。

  • 第一种:chain = LLMChain(llm=llm, prompt=prompt, callbacks=[handler]),chain中直接在callbacks中将callback handler传入
  • 第二种:使用verbose=True,即使不显式声明callbacks,它也使用StdOutCallbackHandler
  • 第三种:chain.invoke({"number":2}, {"callbacks":[handler]}),在invoke时传入callbacks

2. 各种类型的CallBack实践

2.1 通用 callback:BaseCallbackHandler

实现一个自己的Callback handler,继承自BaseCallbackHandler,然后重写自己需要的回调函数即可。

from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import HumanMessage
from langchain_openai import ChatOpenAIclass MyCustomHandler(BaseCallbackHandler):def on_llm_new_token(self, token: str, **kwargs) -> None:print(f"My custom handler, token: {token}")# To enable streaming, we pass in `streaming=True` to the ChatModel constructor
# Additionally, we pass in a list with our custom handler
chat = ChatOpenAI(max_tokens=25, streaming=True, callbacks=[MyCustomHandler()])chat([HumanMessage(content="Tell me a joke")])

运行结果:

在这里插入图片描述

2.2 异步 CallBack:AsyncCallbackHandler

有时候我们可能在CallBack内做大量的数据处理,可能比较耗时,如果使用通用 CallBack,会阻塞主线程运行,这时候异步 CallBack就比较有用了。

实现一个自己的Callback handler,继承自AsyncCallbackHandler,然后重写自己需要的回调函数即可。

class MyCustomAsyncHandler(AsyncCallbackHandler):"""Async callback handler that can be used to handle callbacks from langchain."""...... 重写相关回调函数 ......

2.3 写日志 / 日志文件: FileCallbackHandler

开发项目过程中,写日志是重要的调试手段之一。正式的项目中,我们不能总是将日志输出到终端中,这样无法传递和保存。

from langchain.callbacks import FileCallbackHandler
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAIlogfile = "output.log"handler = FileCallbackHandler(logfile)llm = OpenAI()
prompt = PromptTemplate.from_template("1 + {number} = ")# this chain will both print to stdout (because verbose=True) and write to 'output.log'
# if verbose=False, the FileCallbackHandler will still write to 'output.log'
chain = LLMChain(llm=llm, prompt=prompt, callbacks=[handler], verbose=True)
answer = chain.run(number=2)

运行结果:

在这里插入图片描述

题外话:上面的log文件打开后有点乱码,可以用下面方法解析展示出来:

pip install --upgrade ansi2html
pip install ipython
from ansi2html import Ansi2HTMLConverter
from IPython.display import HTML, displaywith open("output.log", "r") as f:content = f.read()conv = Ansi2HTMLConverter()
html = conv.convert(content, full=True)display(HTML(html))

2.4 Token计数:get_openai_callback

Token就是Money,所以知道你的程序运行中使用了多少Token也是非常重要的。通过get_openai_callback来获取token消耗。

from langchain.callbacks import get_openai_callback
from langchain_openai import OpenAIllm = OpenAI(temperature=0)
with get_openai_callback() as cb:llm("What is the square root of 4?")total_tokens = cb.total_tokens
print("total_tokens: ", total_tokens)## 输出结果:total_tokens:  20

3. 总结

本文我们学习了LangChain的Callbacks模块,实践了各种 CallBack 的用法,知道了怎么利用LangChain进行写日志文件、Token计数等。这对于我们debug程序和监控程序的各个阶段非常重要。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

在这里插入图片描述

这篇关于【AI大模型应用开发】【LangChain系列】6. LangChain的Callbacks模块:监控调试程序的重要手段的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/703157

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语