【AI大模型应用开发】【LangChain系列】6. LangChain的Callbacks模块:监控调试程序的重要手段

本文主要是介绍【AI大模型应用开发】【LangChain系列】6. LangChain的Callbacks模块:监控调试程序的重要手段,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。

LangChain提供了一个回调系统,允许您挂接到LLM应用程序的各个阶段。这对于日志记录、监视、流式传输和其他任务非常有用。

0. LangChain Callbacks模块提供的Callback接口一览

class BaseCallbackHandler:"""Base callback handler that can be used to handle callbacks from langchain."""def on_llm_start(self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) -> Any:"""Run when LLM starts running."""def on_chat_model_start(self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) -> Any:"""Run when Chat Model starts running."""def on_llm_new_token(self, token: str, **kwargs: Any) -> Any:"""Run on new LLM token. Only available when streaming is enabled."""def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any:"""Run when LLM ends running."""def on_llm_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any:"""Run when LLM errors."""def on_chain_start(self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) -> Any:"""Run when chain starts running."""def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> Any:"""Run when chain ends running."""def on_chain_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any:"""Run when chain errors."""def on_tool_start(self, serialized: Dict[str, Any], input_str: str, **kwargs: Any) -> Any:"""Run when tool starts running."""def on_tool_end(self, output: str, **kwargs: Any) -> Any:"""Run when tool ends running."""def on_tool_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any:"""Run when tool errors."""def on_text(self, text: str, **kwargs: Any) -> Any:"""Run on arbitrary text."""def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:"""Run on agent action."""def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:"""Run on agent end."""

1. 最常用的Callback:StdOutCallbackHandler

StdOutCallbackHandler将所有事件的日志作为标准输出,打印到终端中。

注意: 当verbose参数设置为true时, StdOutCallbackHandler是被默认启用的,也就是你看到的它将运行过程的日志全部打印到了终端窗口中。

上示例:

from langchain.callbacks import StdOutCallbackHandler
from langchain.chains import LLMChain
from langchain_openai import OpenAI
from langchain.prompts import PromptTemplatehandler = StdOutCallbackHandler()
llm = OpenAI()
prompt = PromptTemplate.from_template("1 + {number} = ")# Constructor callback: First, let's explicitly set the StdOutCallbackHandler when initializing our chain
chain = LLMChain(llm=llm, prompt=prompt, callbacks=[handler])
chain.invoke({"number":2})# Use verbose flag: Then, let's use the `verbose` flag to achieve the same result
chain = LLMChain(llm=llm, prompt=prompt, verbose=True)
chain.invoke({"number":2})# Request callbacks: Finally, let's use the request `callbacks` to achieve the same result
chain = LLMChain(llm=llm, prompt=prompt)
chain.invoke({"number":2}, {"callbacks":[handler]})

输出:

在这里插入图片描述

对代码和运行结果的解释:

从运行结果可以看出,三次输出的结果相同。再看代码,用三种方式实现了StdOutCallbackHandler的设置。

  • 第一种:chain = LLMChain(llm=llm, prompt=prompt, callbacks=[handler]),chain中直接在callbacks中将callback handler传入
  • 第二种:使用verbose=True,即使不显式声明callbacks,它也使用StdOutCallbackHandler
  • 第三种:chain.invoke({"number":2}, {"callbacks":[handler]}),在invoke时传入callbacks

2. 各种类型的CallBack实践

2.1 通用 callback:BaseCallbackHandler

实现一个自己的Callback handler,继承自BaseCallbackHandler,然后重写自己需要的回调函数即可。

from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import HumanMessage
from langchain_openai import ChatOpenAIclass MyCustomHandler(BaseCallbackHandler):def on_llm_new_token(self, token: str, **kwargs) -> None:print(f"My custom handler, token: {token}")# To enable streaming, we pass in `streaming=True` to the ChatModel constructor
# Additionally, we pass in a list with our custom handler
chat = ChatOpenAI(max_tokens=25, streaming=True, callbacks=[MyCustomHandler()])chat([HumanMessage(content="Tell me a joke")])

运行结果:

在这里插入图片描述

2.2 异步 CallBack:AsyncCallbackHandler

有时候我们可能在CallBack内做大量的数据处理,可能比较耗时,如果使用通用 CallBack,会阻塞主线程运行,这时候异步 CallBack就比较有用了。

实现一个自己的Callback handler,继承自AsyncCallbackHandler,然后重写自己需要的回调函数即可。

class MyCustomAsyncHandler(AsyncCallbackHandler):"""Async callback handler that can be used to handle callbacks from langchain."""...... 重写相关回调函数 ......

2.3 写日志 / 日志文件: FileCallbackHandler

开发项目过程中,写日志是重要的调试手段之一。正式的项目中,我们不能总是将日志输出到终端中,这样无法传递和保存。

from langchain.callbacks import FileCallbackHandler
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAIlogfile = "output.log"handler = FileCallbackHandler(logfile)llm = OpenAI()
prompt = PromptTemplate.from_template("1 + {number} = ")# this chain will both print to stdout (because verbose=True) and write to 'output.log'
# if verbose=False, the FileCallbackHandler will still write to 'output.log'
chain = LLMChain(llm=llm, prompt=prompt, callbacks=[handler], verbose=True)
answer = chain.run(number=2)

运行结果:

在这里插入图片描述

题外话:上面的log文件打开后有点乱码,可以用下面方法解析展示出来:

pip install --upgrade ansi2html
pip install ipython
from ansi2html import Ansi2HTMLConverter
from IPython.display import HTML, displaywith open("output.log", "r") as f:content = f.read()conv = Ansi2HTMLConverter()
html = conv.convert(content, full=True)display(HTML(html))

2.4 Token计数:get_openai_callback

Token就是Money,所以知道你的程序运行中使用了多少Token也是非常重要的。通过get_openai_callback来获取token消耗。

from langchain.callbacks import get_openai_callback
from langchain_openai import OpenAIllm = OpenAI(temperature=0)
with get_openai_callback() as cb:llm("What is the square root of 4?")total_tokens = cb.total_tokens
print("total_tokens: ", total_tokens)## 输出结果:total_tokens:  20

3. 总结

本文我们学习了LangChain的Callbacks模块,实践了各种 CallBack 的用法,知道了怎么利用LangChain进行写日志文件、Token计数等。这对于我们debug程序和监控程序的各个阶段非常重要。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

在这里插入图片描述

这篇关于【AI大模型应用开发】【LangChain系列】6. LangChain的Callbacks模块:监控调试程序的重要手段的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/703157

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo