C#,最大公共子序列(LCS,Longest Common Subsequences)的算法与源代码

本文主要是介绍C#,最大公共子序列(LCS,Longest Common Subsequences)的算法与源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 最大公共子序列

最长的常见子序列问题是寻找两个给定字符串中存在的最长序列。

最大公共子序列算法,常用于犯罪鉴定、亲子鉴定等等的 DNA 比对。

1.1 子序列

让我们考虑一个序列S=<s1,s2,s3,s4,…,sn>。

一个序列Z=<z1,z2,z3,z4,…,zm>在S上被称为S的子序列,当且仅当它可以从某些元素的S删除中派生出来时。

1.2 公共子序列

假设X和Y是有限元素集上的两个序列。如果Z是X和Y的子序列,我们可以说Z是X和Y的公共子序列。

1.3 最长公共子序列

如果给定一组序列,则最长公共子序列问题是找到所有序列中具有最大长度的公共子序列。

最长的常见子序列问题是一个经典的计算机科学问题,是diff实用程序等数据比较程序的基础,在生物信息学中有应用。它还被SVN和Git等版本控制系统广泛用于协调对受版本控制的文件集合所做的多个更改。

2 递归算法源程序

using System;
using System.Text;
using System.Collections;
using System.Collections.Generic;

namespace Legalsoft.Truffer.Algorithm
{
    public static partial class StringSearch
    {
        /// <summary>
        /// 两个字符串的最大公共子字符串
        /// </summary>
        /// <param name="X"></param>
        /// <param name="Y"></param>
        /// <param name="m"></param>
        /// <param name="n"></param>
        /// <returns></returns>
        public static int LCS_Solve(string X, string Y, int m, int n)
        {
            if (m == 0 || n == 0)
            {
                return 0;
            }
            if (X[m - 1] == Y[n - 1])
            {
                return 1 + LCS_Solve(X, Y, m - 1, n - 1);
            }
            else
            {
                return Math.Max(LCS_Solve(X, Y, m, n - 1), LCS_Solve(X, Y, m - 1, n));
            }
        }
    }
}
 

using System;
using System.Text;
using System.Collections;
using System.Collections.Generic;namespace Legalsoft.Truffer.Algorithm
{public static partial class StringSearch{/// <summary>/// 两个字符串的最大公共子字符串/// </summary>/// <param name="X"></param>/// <param name="Y"></param>/// <param name="m"></param>/// <param name="n"></param>/// <returns></returns>public static int LCS_Solve(string X, string Y, int m, int n){if (m == 0 || n == 0){return 0;}if (X[m - 1] == Y[n - 1]){return 1 + LCS_Solve(X, Y, m - 1, n - 1);}else{return Math.Max(LCS_Solve(X, Y, m, n - 1), LCS_Solve(X, Y, m - 1, n));}}}
}

3 非递归算法源程序

using System;
using System.Text;
using System.Collections;
using System.Collections.Generic;

namespace Legalsoft.Truffer.Algorithm
{
    public static partial class StringSearch
    {
        /// <summary>
        /// 计算两个字符串的最大公共子字符串
        /// </summary>
        /// <param name="X"></param>
        /// <param name="Y"></param>
        /// <returns></returns>
        public static int LCS_Solve(string X, string Y)
        {
            int m = X.Length;
            int n = Y.Length;
            int[,] LengthArray = new int[m + 1, n + 1];

            for (int i = 0; i <= m; i++)
            {
                for (int j = 0; j <= n; j++)
                {
                    if (i == 0 || j == 0)
                    {
                        LengthArray[i, j] = 0;
                    }
                    else if (X[i - 1] == Y[j - 1])
                    {
                        LengthArray[i, j] = LengthArray[i - 1, j - 1] + 1;
                    }
                    else
                    {
                        LengthArray[i, j] = Math.Max(LengthArray[i - 1, j], LengthArray[i, j - 1]);
                    }
                }
            }
            return LengthArray[m, n];
        }
    }
}

——————————————————————————

POWER BY TRUFFER.CN 50018.COM

using System;
using System.Text;
using System.Collections;
using System.Collections.Generic;namespace Legalsoft.Truffer.Algorithm
{public static partial class StringSearch{/// <summary>/// 计算两个字符串的最大公共子字符串/// </summary>/// <param name="X"></param>/// <param name="Y"></param>/// <returns></returns>public static int LCS_Solve(string X, string Y){int m = X.Length;int n = Y.Length;int[,] LengthArray = new int[m + 1, n + 1];for (int i = 0; i <= m; i++){for (int j = 0; j <= n; j++){if (i == 0 || j == 0){LengthArray[i, j] = 0;}else if (X[i - 1] == Y[j - 1]){LengthArray[i, j] = LengthArray[i - 1, j - 1] + 1;}else{LengthArray[i, j] = Math.Max(LengthArray[i - 1, j], LengthArray[i, j - 1]);}}}return LengthArray[m, n];}}
}

这篇关于C#,最大公共子序列(LCS,Longest Common Subsequences)的算法与源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701900

相关文章

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

C#连接SQL server数据库命令的基本步骤

《C#连接SQLserver数据库命令的基本步骤》文章讲解了连接SQLServer数据库的步骤,包括引入命名空间、构建连接字符串、使用SqlConnection和SqlCommand执行SQL操作,... 目录建议配合使用:如何下载和安装SQL server数据库-CSDN博客1. 引入必要的命名空间2.

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建