代码随想录算法训练营第二十九天 |491.递增子序列,46.全排列,47.全排列II(待补充)

本文主要是介绍代码随想录算法训练营第二十九天 |491.递增子序列,46.全排列,47.全排列II(待补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

491.递增子序列

1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

2、文章讲解:代码随想录

3、题目:

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:

  • 输入: [4, 6, 7, 7]
  • 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:

  • 给定数组的长度不会超过15。
  • 数组中的整数范围是 [-100,100]。
  • 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。

4、视频链接:

回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili

5、思路:

这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。

这又是子集,又是去重,是不是不由自主的想起了刚刚讲过的90.子集II(opens new window)。

就是因为太像了,更要注意差别所在,要不就掉坑里了!

在90.子集II(opens new window)中我们是通过排序,再加一个标记数组来达到去重的目的。

而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。

所以不能使用之前的去重逻辑!

本题给出的示例,还是一个有序数组 [4, 6, 7, 7],这更容易误导大家按照排序的思路去做了。

为了有鲜明的对比,我用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:

class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex) {// 递增子序列的长度至少是2if (path.size() >= 2) {result.add(new ArrayList<>(path));// 注意这里不要加return,因为要取树上的所有节点}// 定义一个hashset来剪枝HashSet<Integer> hs = new HashSet<>();for (int i = startIndex; i < nums.length; i++) {// 剪枝// 1. path里已经包含的元素// 2. 当前元素比path里最后一个元素还小// 3. 当前元素已经在hs里了if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || hs.contains(nums[i])) {continue;}hs.add(nums[i]);path.add(nums[i]);backTracking(nums, i + 1);path.removeLast();}}
}

46.全排列

1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

2、文章讲解:代码随想录

3、题目:

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

  • 输入: [1,2,3]
  • 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]

4、视频链接:

回溯算法解决子集问题,树上节点都是目标集和! | LeetCode:78.子集_哔哩哔哩_bilibili

5、首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

class Solution {List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果public List<List<Integer>> subsets(int[] nums) {subsetsHelper(nums, 0);return result;}private void subsetsHelper(int[] nums, int startIndex) {result.add(new ArrayList<>(path));//「遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合」。if (startIndex >= nums.length) { // 终止条件可不加return;}for (int i = startIndex; i < nums.length; i++) {path.add(nums[i]);subsetsHelper(nums, i + 1);path.removeLast();}}
}

47.全排列II

1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

2、文章讲解:代码随想录

3、题目:

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

  • 输入:nums = [1,1,2]
  • 输出: [[1,1,2], [1,2,1], [2,1,1]]

示例 2:

  • 输入:nums = [1,2,3]
  • 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

4、视频链接:

回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili

class Solution {// 存放结果List<List<Integer>> result = new ArrayList<>();// 暂存结果List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length];Arrays.fill(used, false);Arrays.sort(nums);backTrack(nums, used);return result;}private void backTrack(int[] nums, boolean[] used) {if (path.size() == nums.length) {result.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {// used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过// used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过// 如果同⼀树层nums[i - 1]使⽤过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}// 如果同⼀树⽀nums[i]没使⽤过开始处理if (used[i] == false) {used[i] = true;// 标记同⼀树⽀nums[i]使⽤过,防止同一树枝重复使用path.add(nums[i]);backTrack(nums, used);path.remove(path.size() - 1);// 回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复used[i] = false;// 回溯}}}
}

这篇关于代码随想录算法训练营第二十九天 |491.递增子序列,46.全排列,47.全排列II(待补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701745

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum