Matlab使用点云工具箱进行点云配准ICP\NDT\CPD

2024-02-11 23:52

本文主要是介绍Matlab使用点云工具箱进行点云配准ICP\NDT\CPD,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、代码

主代码main.m,三种配准方法任选其一

% 读取点云文件
source_pc = pcread('bun_zipper.ply');
target_pc = pcread('bun_zipper2.ply');% 下采样
ptCloudA = point_downsample(source_pc);
ptCloudB = point_downsample(target_pc);% 配准参数设置
opt = param_set("icp");
% opt = param_set("ndt");
% opt = param_set("cpd");
% 执行点云配准
[tform,translation,rotation,registered_pc] = icp_r(ptCloudA,ptCloudB,source_pc,opt);
% [tform,translation,rotation,registered_pc] = ndt_r(ptCloudA,ptCloudB,source_pc,opt);
% [tform,translation,rotation,registered_pc] = cpd_r(ptCloudA,ptCloudB,opt);
cal_and_print_data(tform,translation,rotation);% 可视化
pc_visualization(ptCloudA, ptCloudB, target_pc, registered_pc);

配准参数设置

function[opt] = param_set(name, varargin)
p = inputParser;
addParameter(p,'Metric','pointToPoint');
addParameter(p,'Extrapolate',true);
addParameter(p,'InlierRatio',0.9);
addParameter(p,'Tolerance',[0.01, 0.01]);
addParameter(p,'MaxIterations',100);
addParameter(p,'Verbose',true);
addParameter(p,'method','rigid');
addParameter(p,'viz',0);
addParameter(p,'max_it',100);
addParameter(p,'tol',1e-6);
parse(p,varargin{:});
Metric = p.Results.Metric;
Extrapolate = p.Results.Extrapolate;
InlierRatio = p.Results.InlierRatio;
Tolerance = p.Results.Tolerance;
MaxIterations = p.Results.MaxIterations;
Verbose = p.Results.Verbose;
method = p.Results.method;
viz = p.Results.viz;
max_it = p.Results.max_it;
tol = p.Results.tol;
opt = containers.Map();
if name=="icp" || name == "ndt"opt('Metric') = Metric;opt('Extrapolate') = Extrapolate;opt('InlierRatio') = InlierRatio;opt('Tolerance') = Tolerance;opt('MaxIterations') = MaxIterations;opt('Verbose') = Verbose;
elseif name == "cpd"opt('method') = method;opt('viz') = viz;opt('max_it') = max_it;opt('tol') = tol;
end

icp函数代码icp_r.m

function [tform,translation,rotation,registered_pc] = icp_r(ptCloudA, ptCloudB, source_pc, opt)% tform 是一个 rigid3d 类型的对象,包含了配准后的转换矩阵。
% 参数说明:
% 'Metric' - 配准的度量类型,可以是 'pointToPoint'(默认值)或 'pointToPlane',
%            'pointToPoint' 直接最小化点之间的距离,
%            'pointToPlane' 最小化点到面的距离,通常更快收敛但需要法线信息。
% 'Extrapolate' - 用于加速算法,如果设置为 true,算法会用前两次迭代的变换来预测下一步的变换。
% 'InlierRatio' - 预期的内点比例,范围从 0 到 1。内点是最有可能对应于固定点云中点的移动点云中的点。
% 'MaxIterations' - ICP算法的最大迭代次数。
% 'Tolerance' - 一个包含两个元素的向量,第一个元素是均方根变化容忍度,第二个元素是最小迭代改变容忍度。
% 'Verbose' - 如果设置为 true,将在命令窗口中显示算法的进度信息。
tform = pcregistericp(ptCloudA,ptCloudB, 'Metric', opt('Metric'), ...'Extrapolate', opt('Extrapolate'), ...'InlierRatio', opt('InlierRatio'), ...'Tolerance', opt('Tolerance'), ...'MaxIterations', opt('MaxIterations'), ...'Verbose', opt('Verbose'));
% 提取平移向量
translation = tform.T(4, 1:3);
% 提取旋转矩阵
rotation = tform.T(1:3, 1:3);
% 应用配准变换到源点云
registered_pc = pctransform(source_pc, tform);end

ndt函数代码ndt_r.m,由于matlab点云工具箱没有提供相关的特征提取函数,所以采用icp粗配准获得初始变换矩阵,再进行ndt精配准

function[tform,translation,rotation,registered_pc] = ndt_r(ptCloudA, ptCloudB, source_pc,opt)
% 使用 ICP 算法进行粗略配准,获取初始变换矩阵
tform = pcregistericp(ptCloudA,ptCloudB, 'Metric', opt('Metric'), ...'Extrapolate', opt('Extrapolate'), ...'InlierRatio', opt('InlierRatio'), ...'Tolerance', opt('Tolerance'), ...'MaxIterations', opt('MaxIterations'), ...'Verbose', opt('Verbose'));
% 使用 NDT 算法进行精确配准
% 参数说明:
% gridSize - 用于创建用于 NDT 算法的体素网格的大小。较小的值可能会提高精度,但会增加计算成本。
% 'MaxIterations' - NDT算法的最大迭代次数。
% 'Tolerance' - 一个包含两个元素的向量:
%               tolerance1 - 迭代之间变换的最大容忍度。
%               tolerance2 - 均方根误差的最大容忍度。
% 'InitialTransform' - 配准之前的初始变换,这是一个 rigid3d 类型的对象。
% 'Verbose' - 如果设置为 true,将在命令窗口中显示算法的进度信息。% tform 是一个 rigid3d 类型的对象,包含了配准后的变换矩阵。
gridStep =0.1; % 网格大小
tform = pcregisterndt(ptCloudA, ptCloudB, gridStep, ...'MaxIterations', opt('MaxIterations'), ...'Tolerance', opt('Tolerance'), ...'InitialTransform', tform, ... % 使用单位矩阵作为初始变换'Verbose', opt('Verbose'));
% 提取平移向量
translation = tform.T(4, 1:3);
% 提取旋转矩阵
rotation = tform.T(1:3, 1:3);
% 应用配准变换到源点云
registered_pc = pctransform(source_pc, tform);
end

cpd函数代码cpd_r.m,这个cpd配准还需要额外的cpd工具箱

function[tform,translation,rotation,registered_pc] = cpd_r(ptCloudA,ptCloudB, opt)
% 转换为双精度的坐标矩阵
X = double(ptCloudA.Location);
Y = double(ptCloudB.Location);
% 设置CPD选项,根据需要调整参数
op.method = opt('method'); % 使用非刚性变换,也可以选择 'rigid' 或 'affine'
op.viz = opt('viz');             % 显示配准过程
op.max_it = opt('max_it');        % 最大迭代次数
op.tol = opt('tol');          % 收敛容忍度% 执行CPD配准
[tform, C] = cpd_register(Y, X, op);
% 提取平移向量
translation = tform.t;% 提取旋转矩阵
rotation = tform.R;
registered_pc = pointCloud(tform.Y);
end

点云下采样

function[ptCloud] = point_downsample(pc)
gridStep = 0.005;
ptCloud = pcdownsample(pc,'gridAverage',gridStep);
end

计算并打印相关位姿信息

function[] = cal_and_print_data(tform,translation,rotation)% 将旋转矩阵转换为欧拉角\四元数
eulerAngles = rotm2eul(rotation);
quat = rotm2quat(rotation);
%打印信息
fprintf('变换矩阵:')
disp(tform)
fprintf('平移量 (x, y, z): %.4f, %.4f, %.4f\n', translation(1), translation(2), translation(3));
fprintf('欧拉角 (rx, ry, rz): %.4f, %.4f, %.4f\n', rad2deg(eulerAngles(3)), rad2deg(eulerAngles(2)), rad2deg(eulerAngles(1)));
fprintf('四元数 (w, x, y, z): %.4f, %.4f, %.4f, %.4f\n', quat(1), quat(2), quat(3), quat(4));
end

可视化

function[] = pc_visualization(ptCloudA, ptCloudB, target_pc, registered_source_pc)
figure("Name", "原图像与配准后的图像");
set(gcf,'position',[150 80 1000 800])
subplot(2,1,1)
pcshowpair(ptCloudA, ptCloudB, 'MarkerSize', 20,'BackgroundColor',"white");
title('原图像');
xlabel('X-axis');
ylabel('Y-axis');
zlabel('Z-axis');
view(2)
legend('Target Point Cloud', 'Source Point Cloud');
%figure("Name", "配准后的图像");
subplot(2,1,2)
pcshowpair(target_pc, registered_source_pc, 'MarkerSize', 20,'BackgroundColor',"white");
title('配准后的图像');
xlabel('X-axis');
ylabel('Y-axis');
zlabel('Z-axis');
view(2)
legend('Target Point Cloud', 'Registered Source Point Cloud');% 调整子图之间的距离
h = gcf; % 获取当前图形的句柄
h.Children(1).Position(2) = h.Children(1).Position(2) + 0.05; % 调整第一个子图的位置
h.Children(2).Position(2) = h.Children(2).Position(2) - 0.05; % 调整第二个子图的位置
end

二、结果

icp结果

ndt结果

cpd结果

三种方法实验下来,两个点云基本都是z轴有45度的相对转角

三、工具箱安装和示例文件

点云工具箱:链接:https://pan.baidu.com/s/1zNo03fIxP63-lOSjePCcLg 
提取码:wstc 

cpd工具箱:链接:https://pan.baidu.com/s/1-Um4pRcYJOAKLWjeuL-zlA 
提取码:wstc 
示例文件:链接:https://pan.baidu.com/s/1ql_q4jnUZjlZL3l3fRo8vQ 
提取码:wstc 

完整代码:matlab点云配准,包括ICP/NDT/CPD算法资源-CSDN文库

这篇关于Matlab使用点云工具箱进行点云配准ICP\NDT\CPD的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701153

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他