【正在更新】从零开始认识语音识别:DNN-HMM混合系统语音识别(ASR)原理

本文主要是介绍【正在更新】从零开始认识语音识别:DNN-HMM混合系统语音识别(ASR)原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要 | Abstract

        TO-BE-FILLED

1.前言 | Introduction

        近期想深入了解语音识别(ASR)中隐马尔可夫模型(HMM)和深度神经网络-隐马尔可夫(DNN-HMM)混合模型,但是尽管网络上有许多关于DNN-HMM的介绍,如李宏毅教授的《深度学习人类语言处理》[1],一些博主的语音识别系列文章[2],斯坦福大学HMM课件[3]。但是这些材料要么不够细致完备,要么对初学者来说过于复杂深奥(尤以HMM部分的琳琅满目的概率公式为首)。

        因此,笔者在阅读了大量相关资料后希望用深入浅出的方式为大家系统地介绍DNN-HMM混合模型。本文旨在为零基础者从头解析使用DNN-HMM混合方法的语音识别系统的底层原理

        笔者希望让仅仅具备本科概率论基础的人也能读懂,如果你符合这个条件但仍觉得理解起来困难,你可以留下你的疑惑,以帮助我们改进文章。

        

2.问题描述 | Problem Statement

        我们直入主题,语音识别模型是这样一个模型,它将一串语音信号X(如一个仅包含语音的.wav音频文件)作为模型的输入,目的在于输出一个与之最为匹配的文字内容\hat{Y}(为了简化问题,本文只考虑英文场景,其它语言原理基本类似)。其中,当我们说“最为匹配”的时候,我们主要考虑的是“最有可能”的,亦即,语音识别模型希望在给定X时,给出\hat{Y},使得:

\hat{Y}=argmax_{Y}\{P(Y|X)\}

上式意味着,我们要找使得P(Y|X)最大的Y,记作\hat{Y}
        要解决这个问题,一个最直观的办法就是穷举所有可能的Y,然后比一比他们的概率P(Y|X),再选出最大的那一个。显然这个想法是不现实的,因为所有可能的Y也许是一个无穷的集合。再者,就算能够缩小范围,枚举出大量比较可能的候选Y,又如何比较概率P(Y|X)的大小呢?因而枚举法似乎不是好的选择。

        HMM类的方法则选择使用贝叶斯理论对概率进行处理,这我们在后面会详细说明。在此之前,笔者想为大家简单讲讲其它的更清晰的解决思路。

3.相关研究 | Related Work

        得益于今日神经网络技术的快速发展,熟悉深度学习的我们很容易联想到,似乎只要利用大量的音频以及对应的文本标注进行训练,不需要额外的人工处理应该也能做到很好的泛化能力(即拿到新的语音信号时可以准确地给出真实的文字答案)吧?

        答案是:确实有,这种办法被称为Listen Attend, and Spell,简称LAS[4]。它使用一个深度学习模型,直接用声音信号和人工标记的文字训练,在推理时听到新的声音信号就能给出它认为最匹配的文字内容。由于直接输入音频信号X就能推理出其中的文字\hat{Y},LAS被归为端到端(End to End)模型。

        不得不说,LAS这种方法确实是最符合(机器学习研究者的)直觉的,就像其它任何的机器学习任务(如图像识别)一样,训练和推理再好理解不过了。

        除了即将要介绍的HMM类模型,LAS、Transformer[5],还有CTC[6],RNN-T[7]等。这些内容不是本文的重点,就不一一介绍了。

        尽管LAS等端到端模型操作非常简单无脑,但是在过去的很长一段时间内,这些堪称暴力的方法并没有想象中的那么强。至少在2020年时,商业语音识别系统的主力军还是咱们今天文章的主角DNN-HMM[1],同时DNN-HMM模型也是第一个被宣称达到人类同级别语音识别水平的模型[8]。接下来我们就要展开介绍HMM类模型:GMM-HMM系统和DNN-HMM混合系统。

4.方法 | Method

        前文提到,语音识别的任务可以简化为概率问题——在给定X时,给出\hat{Y},使得:

\hat{Y}=argmax_{Y}\{P(Y|X)\}

由于不好直接求得P(Y|X)以进行比较,在HMM系统中,我们引入贝叶斯公式将上式反转,即作以下变型:

\hat{Y}=argmax_{Y}\{P(Y|X)\}=argmax_{Y}\{\frac{P(X|Y)P(Y)}{P(X)}\}

其中由于去掉分母P(X)不影响分式的大小比较,上式又等价于求:

\hat{Y}=argmax_{Y}\{P(X|Y)P(Y)) \}

       这其中,我们P(X|Y)声学模型(Acoustic Model),称P(Y)语言模型(Language Model)。(对,就是Chat GPT一类的语言模型)

        这样,我们就将不容易估计的概率转变成容易估计的概率。接下来我们简要解释声学模型和语言模型的含义,以及为什么说他们容易估计。

4.1.声学模型与语言模型

        首先是声学模型P(X|Y),按字面意思理解,它就是给定文字内容Y,其对应发音结果为音频X的概率。这个过程是一个正向的过程,是较好估计的。举一个不那么恰当的例子,如在中文里,文字“朝阳”对应的发声结果中,发出类似于“cháo yáng”或者“zhāo yáng”的概率是比较大的,但发出任何其它的声音的概率都是比较小的。笔者认为,这也是该概率被称为“声学模型”的原因,因为它描述的是“念”某一文字发出某一声音的概率,即某文字的“发声概率”。

        以上的例子只是为了简要说明“声学模型”的内涵而并不具有严谨性,对于某一文字内容对应应该发出什么声音,应考虑更全面更深入的因素,而通过拼音的方式进行描述是抽象而模糊的。事实上,HMM正是声学模型,其提出者将文字的发音过程简化作一个隐马尔可夫模型。这部分内容我们会在后文详细介绍,在此不多赘述。

        至于语言模型P(Y),则是用于描述某一文字Y出现的概率,也代表其出现的合理性。如在英文里的经典例子,“识别语音”的英文“recognize speech”和“毁坏一个好沙滩”的英文“wreck a nice beach”的发音应是一模一样的。但是,由于后者的词语搭配缺乏合理性(也可理解为在大量的各类文字材料中后者出现的频率小得多),其概率P(Y)也小得多,故在二者的声学模型取值相同(因为发音完全一样)的情况下,“recognize speech”是具有更高可能的识别结果。在实践中,我们会统计各词语在各种语境(上下文环境)中出现的频率,作为语言模型使用。时常,这样的统计还不足够令人满意,我们也会从逻辑的角度出发对目标材料进行合理扩展。另外,作为评判文字出现合理性的语言模型,成果缔造了Chat GPT这类能生成很多“合理”对话的聊天机器人。由于语言模型不是行文的重点,我们推荐有兴趣的读者查阅语言模型的其它相关材料,不再拓展阐述。

        值得一提的是,即便是对于LAS之类的端到端模型,也即没有使用贝叶斯公式变换出P(Y)这一式子,而是直接求解原问题\hat{Y}=argmax_{Y}\{P(Y|X)\}的模型,也会引入语言模型P(Y),即LAS等模型在实际上会求解\hat{Y}=argmax_{Y}\{P(Y|X)P(Y)\}。尽管这一表达式缺乏逻辑,但在实践中却能起到可观的效果,其原因可能在于这些模型本身不能很好地估计P(Y|X),因而来自语言模型的修正可以生效[1]。

        回到语音识别的问题上来,我们的目标是找到使得声学模型P(X|Y)和语言模型P(Y)相乘概率最大的Y。换一个角度理解:语言模型可以基于声学模型所生成的词组的合理性对语音识别结果进行重打分(rescoring),以帮助改进识别质量。

4.2.声学模型的构建:GMM-HMM系统

        前文已经提到,在搭建声学模型P(X|Y)的过程中,我们引入了HMM模型,其原因在于可以将发声的过程看作是是隐马尔可夫过程。但是在深入分析HMM相关内容之前,为了叙述逻辑的通畅,我们还是先从P(X|Y)这一式子讲起。

4.2.1.对齐:音频分帧与音素分解

        当我们想进一步探讨P(X|Y)这一式子时,一个现实的问题立马扑面而来:对齐。由于语音的随意性和多样性,同一个文本内容会对应无穷多种时间上的差异组合。例如英文里的元音,中文里韵母等,其发音都可以无限地延长。对此,一个很直观的解决方案就是,将音频X切片,分为一小段一小段的内容,再去讨论每一小段对应的内容。

        

TO-BE-CONTINUED

参考资料

[1] 国立台湾大学李宏毅 (Hung-yi Lee)教授DLHLP2020课程,原网址:Hung-yi Lee (ntu.edu.tw) ,B站搬运Speech Recognition (Option) - HMM_哔哩哔哩_bilibili

[2] 【AI大道理】AI大语音(十三)——DNN-HMM (深度解析)-CSDN博客

[3] Stanford University EE365: Hidden Markov Models  hmm.pdf (stanford.edu)

[4] W. Chan, N. Jaitly, Q. Le and O. Vinyals, "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016, pp. 4960-4964, doi: 10.1109/ICASSP.2016.7472621.

[5] Linhao Dong, Shuang Xu, and Bo Xu. "Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition."2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

[6] Graves, Alex & Fernández, Santiago & Gomez, Faustino & Schmidhuber, Jürgen. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural 'networks. ICML 2006 - Proceedings of the 23rd International Conference on Machine Learning. 2006. 369-376. 10.1145/1143844.1143891. 

[7] Graves, Alex. “Sequence Transduction with Recurrent Neural  Networks.”  2012 ArXiv abs/1211.3711

[8] W. Xiong et al., "Toward Human Parity in Conversational Speech Recognition," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 12, pp. 2410-2423, Dec. 2017, doi: 10.1109/TASLP.2017.2756440. 

这篇关于【正在更新】从零开始认识语音识别:DNN-HMM混合系统语音识别(ASR)原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699527

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数