LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT

2024-02-11 10:04

本文主要是介绍LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       如下图所示,LLM仍然是自治代理的backbone,可以通过给LLM增加以下模块来增强LLM功能:

  • Prompter Agent
  • Checker Module
  • Memory module
  • ToT controller

       当解决具体问题时,这些模块与LLM进行多轮对话。这是基于LLM的自治代理的典型情况,其中动态创建链并按顺序执行,同时多次轮询LLM。

       下图是LangSmith[1]的界面,从图中可以看到使用的tokens总数以及两个延迟类别。

       此图显示了Trace部分,其中包含为该代理创建的完整链,以及输入和输出。LangSmith在链的每一步都给出了详细的分解,包括成本(tokens)和延迟。

       会话和状态历史记录(上下文)存储在内存模块中,这使代理可以参考思维过程的先前部分,并可能从历史记忆采取不同的路线。

      为了验证ToT技术的有效性,本文实现了一个基于ToT的代理来解决数独难题。

论文[2]实验结果表明,ToT框架可以显著提高数独解谜的成功率

       论文指出的一个漏洞是LLM是基于前面的序列生成内容,而忽略了向后编辑。然而,当我们人类解决一个问题时,如果派生的步骤不正确,我们很可能会回溯到以前的迭代。这种回溯方法否定了LLM达到不确定或无答案场景的危险。

       其次,为了建立确保正确性,我们人类的一种做法是在解决问题的每一步都进行测试,这确保了最终解决方案的可信度。本文统计了自回归语言模型在基于以前的token生成新token时,不会显式执行逻辑正确性检查,这限制了LLM纠正自身错误的能力。随着模型生成更多的tokens,一个小错误可能会被放大,这通常被称为级联。因此这会导致生成质量下降,并使其难以从错误中恢复。级联很早就被认为是手动创建提示链的一种危险。然而,考虑到自主代理在运行中创建了一系列提示,它仍然容易受到级联的影响。

该策略[2]通过LLM和提示器代理之间的多轮对话来解决问题。

      上图显示了四种方法的成功率:zero-shot(zs)、one-shot(os)、few-shot(fs)和Tree-of-Thought(tot)。

       以下是ToT代理的完整代码,您可以将其复制并粘贴到笔记本中。您需要更新的只是OpenAI API密钥和LangSmith API密钥。

pip install langchainpip install langchain_experimentalpip install -U langsmithpip install openai#######import osfrom uuid import uuid4unique_id = uuid4().hex[0:8]os.environ["LANGCHAIN_TRACING_V2"] = "true"os.environ["LANGCHAIN_PROJECT"] = f"Agent Tot"os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"os.environ["LANGCHAIN_API_KEY"] = "xxxxxxxxxxxxxxxxxxxxxxxx"os.environ['OPENAI_API_KEY'] = str("xxxxxxxxxxxxxxxxxxxxxxxx")#######from langchain.llms import OpenAIllm = OpenAI(temperature=1, max_tokens=512, model="text-davinci-003")#######sudoku_puzzle =   "3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1"sudoku_solution = "3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1"problem_description = f"""{sudoku_puzzle}- This is a 4x4 Sudoku puzzle.- The * represents a cell to be filled.- The | character separates rows.- At each step, replace one or more * with digits 1-4.- There must be no duplicate digits in any row, column or 2x2 subgrid.- Keep the known digits from previous valid thoughts in place.- Each thought can be a partial or the final solution.""".strip()print(problem_description)######## The following code implement a simple rule based checker for # a specific 4x4 sudoku puzzle.#######from typing import Tuplefrom langchain_experimental.tot.checker import ToTCheckerfrom langchain_experimental.tot.thought import ThoughtValidityimport reclass MyChecker(ToTChecker):    def evaluate(self, problem_description: str, thoughts: Tuple[str, ...] = ()) -> ThoughtValidity:        last_thought = thoughts[-1]        clean_solution = last_thought.replace(" ", "").replace('"', "")        regex_solution = clean_solution.replace("*", ".").replace("|", "\\|")        if sudoku_solution in clean_solution:            return ThoughtValidity.VALID_FINAL        elif re.search(regex_solution, sudoku_solution):            return ThoughtValidity.VALID_INTERMEDIATE        else:            return ThoughtValidity.INVALID######## Testing the MyChecker class above:#######checker = MyChecker()assert checker.evaluate("", ("3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1",)) == ThoughtValidity.VALID_INTERMEDIATEassert checker.evaluate("", ("3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1",)) == ThoughtValidity.VALID_FINALassert checker.evaluate("", ("3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,1",)) == ThoughtValidity.VALID_INTERMEDIATEassert checker.evaluate("", ("3,4,1,2|1,2,3,4|2,1,4,3|4,*,3,1",)) == ThoughtValidity.INVALID######## Initialize and run the ToT chain, # with maximum number of interactions k set to 30 and # the maximum number child thoughts c set to 8.#######from langchain_experimental.tot.base import ToTChaintot_chain = ToTChain(llm=llm, checker=MyChecker(), k=30, c=5, verbose=True, verbose_llm=False)tot_chain.run(problem_description=problem_description)#######

         代理的输出、迭代和回溯可以在输出中看到:

> Entering new ToTChain chain...Starting the ToT solve procedure./usr/local/lib/python3.10/dist-packages/langchain/chains/llm.py:278: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.  warnings.warn(Thought: 3,4,*,2|1,*,3,*|*,1,*,3|4,*,*,1    Thought: 3,4,1,2|1,*,3,*|*,1,*,3|4,*,*,1        Thought: 3,4,1,2|1,2,3,*|*,1,*,3|4,*,*,1            Thought: 3,4,1,2|1,2,3,4|*,1,*,3|4,*,*,1                Thought: 3,4,1,2|1,2,3,*|1,1,*,3|4,*,*,1                Thought: 3,4,1,2|1,2,3,*|*,2,*,3|4,*,*,1                Thought: 3,4,1,2|1,2,3,*|*,1,1,3|4,*,*,1                Thought: 3,4,1,2|1,2,3,*|*,1,*,4|4,*,*,1                Thought: 3,4,1,2|1,2,3,*|*,1,*,1|4,4,*,1            Thought: 3,4,1,2|1,2,3,*|1,1,*,3|4,*,*,1            Thought: 3,4,1,2|1,2,3,*|*,1,2,3|4,*,*,1            Thought: 3,4,1,2|1,2,3,*|*,1,*,3|4,1,*,1            Thought: 3,4,1,2|1,2,3,*|*,1,*,3|4,*,1,1        Thought: 3,4,1,2|1,*,3,4|*,1,*,3|4,*,*,1            Thought: 3,4,1,2|1,2,3,4|*,1,*,3|4,*,*,1                Thought: 3,4,1,2|1,2,3,4|2,1,*,3|4,*,*,1                    Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,*,*,1                        Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,1,*,*                        Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,2,*,*                        Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,*                            Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,3,1,*                            Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,*                                Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1> Finished chain.3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1

        在Colab笔记本中查看的输出如下所示:

参考文献:

[1] https://cobusgreyling.medium.com/langsmith-1dd01049c3fb

[2] https://arxiv.org/pdf/2305.08291.pdf

[3] https://cobusgreyling.medium.com/langchain-langsmith-llm-guided-tree-of-thought-47a2cd5bcfca

这篇关于LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699509

相关文章

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os