python统计分析——两样本t检验

2024-02-11 07:28

本文主要是介绍python统计分析——两样本t检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:用python动手学统计学

1、导入库

# 导入库
# 用于数值计算的库
import numpy as np
import pandas as pd
import scipy as sp
from scipy import stats
# 用于绘图的库
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()

2、准备数据

data=pd.DataFrame({'person':['A', 'B', 'C', 'D', 'E', 'A', 'B', 'C', 'D', 'E'],'medicine':['before', 'before', 'before', 'before', 'before', 'after', 'after', 'after', 'after', 'after'],'temp':[36.2, 36.2, 35.3, 36.1, 36.1, 36.8, 36.1, 36.8, 37.1, 36.9]
}
)
data

3、提出假设
零假设H0:服药前后体温不变

备择假设HA:服药前后体温有变化

4、配对数据t检验

4.1求出配对数据间的差值

# 方法1
before=data.query("medicine=='before'")['temp']
after=data.query("medicine=='after'")['temp']
# 转化为数组
before=np.array(before)
after=np.array(after)
# 计算差值
diff=after-before
diff
# 方法2
before=data.loc[data.medicine=='before']['temp']
after=data.loc[data.medicine=='after']['temp']
# 转化为数组
before=np.array(before)
after=np.array(after)
# 计算差值
diff=after-before
diff
# 方法3
data2=data.pivot_table(index='person',columns='medicine',values='temp')
diff=data2.after-data2.before
diff

4.2 进行t检验

方法一:函数scipy.stats.ttest_1samp()

相关参数设置参考:https://blog.csdn.net/maizeman126/article/details/135977775

stats.ttest_1samp(diff,0)

方法二:函数scipy.stats.ttest_rel()

stats.ttest_rel(after,before)

ttest_rel()函数的相关参数设置与ttest_1samp()函数基本一致。

这里对ttest_rel()函数alternative参数的设置进行介绍:

'two-sided':表示a,b两列数据的均值不同。

'less':表示前者的均值小于后者。

'greater':表示前者的均值大于后者。

5、结论

pvalue<0.05,可以认为服药前后体温有显著变化。

6、独立样本t检验

       原则上配对数据不适用于独立样本t检验,这里只是为了介绍独立样本t检验,将现有的data数据假设为独立样本数据。

       独立样本t检验分为等方差和异方差。在python中都是一个函数,只是在参数设置上不一样。函数为:scipy.stats.ttest_ind()。这里重点介绍:equal_var参数,用于设置等方差还是异方差,默认为True,即等方差;当设置为False时,则进行Welch's t-test。

       按照传统教材,独立样本t检验需要检查数据的同方差性,在根据情况进行相应的t检验。但《用python动手学统计学》作者认为忽略两个样本是否为同方差,直接以方差不同位置前提进行检验也无大碍;大家可以根据自身需求选择严谨的t检验步骤或粗放的t检验步骤。

stats.ttest_ind(after,before,equal_var=False)

这篇关于python统计分析——两样本t检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699201

相关文章

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我