近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

本文主要是介绍近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

最近天气异常暴热,看到某些地方地表温度居然达到70°,这就离谱
所以就想采集一下天气的数据,做个可视化图,回忆一下去年的天气情况

开发环境

  • python 3.8 运行代码
  • pycharm 2021.2 辅助敲代码
  • requests 第三方模块

天气数据采集

1. 发送请求

url = 'https://tianqi.2345.com/Pc/GetHistory?areaInfo%5BareaId%5D=54511&areaInfo%5BareaType%5D=2&date%5Byear%5D=2022&date%5Bmonth%5D=5'
response = requests.get(url)
print(response)

返回<Response [200]>: 请求成功

2. 获取数据

print(response.json())

3. 解析数据 天气信息提取出来

结构化数据解析:Python字典取值
非结构化数据解析:网页结构

json_data = response.json()
html_data = json_data['data']
select = parsel.Selector(html_data)
trs = select.css('table tr')
for tr in trs[1:]:# 网页结构# html网页 <td>asdfwaefaewfweafwaef</td> <a></a> <div></div># ::text: 我需要这个 标签里面的文本内容td = tr.css('td::text').getall()print(td)

4. 保存数据

with open('天气数据.csv', encoding='utf-8', mode='a', newline='') as f:csv_writer = csv.writer(f)csv_writer.writerow(td)


数据可视化效果

读取数据

data = pd.read_csv('天气数据.csv')
data

分割日期/星期

data[['日期','星期']] = data['日期'].str.split(' ',expand=True,n=1)
data

去除多余字符

data[['最高温度','最低温度']] = data[['最高温度','最低温度']].apply(lambda x: x.str.replace('°',''))
data.head()

北上广深2021年10月份天气热力图分布

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns#设置全局默认字体 为 雅黑
plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小
plt.rcParams["axes.labelsize"] = 14  
# 设置背景
sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图ax = sns.heatmap(data_pivot, cmap=cmap, vmax=30, annot=True, # 热力图上显示数值linewidths=0.5,) 
# 将x轴刻度放在最上面
ax.xaxis.set_ticks_position('top') 
plt.title('北京最近10个月天气分布',fontsize=16) #图片标题文本和字体大小
plt.show()



北京2021年每日最高最低温度变化

color0 = ['#FF76A2','#24ACE6']
color_js0 = """new echarts.graphic.LinearGradient(0, 1, 0, 0,[{offset: 0, color: '#FFC0CB'}, {offset: 1, color: '#ed1941'}], false)"""
color_js1 = """new echarts.graphic.LinearGradient(0, 1, 0, 0,[{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#009ad6'}], false)"""tl = Timeline()
for i in range(0,len(data_bj)):coordy_high = list(data_bj['最高温度'])[i]coordx = list(data_bj['日期'])[i]coordy_low = list(data_bj['最低温度'])[i]x_max = list(data_bj['日期'])[i]+datetime.timedelta(days=10)y_max = int(max(list(data_bj['最高温度'])[0:i+1]))+3y_min = int(min(list(data_bj['最低温度'])[0:i+1]))-3title_date = list(data_bj['日期'])[i].strftime('%Y-%m-%d')c = (Line(init_opts=opts.InitOpts(theme='dark',#设置动画animation_opts=opts.AnimationOpts(animation_delay_update=800),#(animation_delay=1000, animation_easing="elasticOut"),#设置宽度、高度width='1500px',height='900px', )).add_xaxis(list(data_bj['日期'])[0:i]).add_yaxis(series_name="",y_axis=list(data_bj['最高温度'])[0:i], is_smooth=True,is_symbol_show=False,linestyle_opts={'normal': {'width': 3,'shadowColor': 'rgba(0, 0, 0, 0.5)','shadowBlur': 5,'shadowOffsetY': 10,'shadowOffsetX': 10,'curve': 0.5,'color': JsCode(color_js0)}},itemstyle_opts={"normal": {"color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{offset: 0,color: '#ed1941'}, {offset: 1,color: '#009ad6'}], false)"""),"barBorderRadius": [45, 45, 45, 45],"shadowColor": "rgb(0, 160, 221)",}},).add_yaxis(series_name="",y_axis=list(data_bj['最低温度'])[0:i], is_smooth=True,is_symbol_show=False,
#             linestyle_opts=opts.LineStyleOpts(color=color0[1],width=3),itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js1)),linestyle_opts={'normal': {'width': 3,'shadowColor': 'rgba(0, 0, 0, 0.5)','shadowBlur': 5,'shadowOffsetY': 10,'shadowOffsetX': 10,'curve': 0.5,'color': JsCode(color_js1)}},).set_global_opts(title_opts=opts.TitleOpts("北京2021年每日最高最低温度变化\n\n{}".format(title_date),pos_left=330,padding=[30,20]),xaxis_opts=opts.AxisOpts(type_="time",max_=x_max),#, interval=10,min_=i-5,split_number=20,axistick_opts=opts.AxisTickOpts(length=2500),axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="grey"))yaxis_opts=opts.AxisOpts(min_=y_min,max_=y_max),#坐标轴颜色,axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="grey"))))tl.add(c, "{}".format(list(data_bj['日期'])[i]))tl.add_schema(axis_type='time',play_interval=100,  # 表示播放的速度pos_bottom="-29px",is_loop_play=False, # 是否循环播放width="780px",pos_left='30px',is_auto_play=True,  # 是否自动播放。is_timeline_show=False)
tl.render_notebook()

北上广深10月份每日最高气温变化

# 背景色
background_color_js = ("new echarts.graphic.LinearGradient(0, 0, 0, 1, ""[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)"
)# 线条样式
linestyle_dic = { 'normal': {'width': 4,  'shadowColor': '#696969', 'shadowBlur': 10,  'shadowOffsetY': 10,  'shadowOffsetX': 10,  }}timeline = Timeline(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),width='980px',height='600px'))bj, gz, sh, sz= [], [], [], []
all_max = []
x_data = data_10[data_10['城市'] == '北京']['日'].tolist()
for d_time in range(len(x_data)):bj.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='北京')]["最高温度"].values.tolist()[0])gz.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='广州')]["最高温度"].values.tolist()[0])sh.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='上海')]["最高温度"].values.tolist()[0])sz.append(data_10[(data_10['日'] == x_data[d_time]) & (data_10['城市']=='深圳')]["最高温度"].values.tolist()[0])line = (Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),width='980px',height='600px')).add_xaxis(x_data,).add_yaxis('北京',bj,symbol_size=5,is_smooth=True,is_hover_animation=True,label_opts=opts.LabelOpts(is_show=False),).add_yaxis('广州',gz,symbol_size=5,is_smooth=True,is_hover_animation=True,label_opts=opts.LabelOpts(is_show=False),).add_yaxis('上海',sh,symbol_size=5,is_smooth=True,is_hover_animation=True,label_opts=opts.LabelOpts(is_show=False),).add_yaxis('深圳',sz,symbol_size=5,is_smooth=True,is_hover_animation=True,label_opts=opts.LabelOpts(is_show=False),).set_series_opts(linestyle_opts=linestyle_dic).set_global_opts(title_opts=opts.TitleOpts(title='北上广深10月份最高气温变化趋势',pos_left='center',pos_top='2%',title_textstyle_opts=opts.TextStyleOpts(color='#DC143C', font_size=20)),tooltip_opts=opts.TooltipOpts(trigger="axis",axis_pointer_type="cross",background_color="rgba(245, 245, 245, 0.8)",border_width=1,border_color="#ccc",textstyle_opts=opts.TextStyleOpts(color="#000"),),xaxis_opts=opts.AxisOpts(
#                 axislabel_opts=opts.LabelOpts(font_size=14, color='red'),
#                 axisline_opts=opts.AxisLineOpts(is_show=True,
#                 linestyle_opts=opts.LineStyleOpts(width=2, color='#DB7093'))is_show = False),yaxis_opts=opts.AxisOpts(name='最高气温',            is_scale=True,
#                 min_= int(min([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) - 10,max_= int(max([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) + 10,name_textstyle_opts=opts.TextStyleOpts(font_size=16,font_weight='bold',color='#5470c6'),axislabel_opts=opts.LabelOpts(font_size=13,color='#5470c6'),splitline_opts=opts.SplitLineOpts(is_show=True, linestyle_opts=opts.LineStyleOpts(type_='dashed')),axisline_opts=opts.AxisLineOpts(is_show=True,linestyle_opts=opts.LineStyleOpts(width=2, color='#5470c6'))),legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',legend_icon='roundRect',orient = 'vertical'),))timeline.add(line, '{}'.format(x_data[d_time]))timeline.add_schema(play_interval=1000,          # 轮播速度is_timeline_show=True,      # 是否显示 timeline 组件is_auto_play=True,          # 是否自动播放pos_left="0",pos_right="0"
)
timeline.render_notebook()

这篇关于近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698423

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro