《剑指 Offer》专项突破版 - 面试题 38、39 和 40 : 通过三道面试题详解单调栈(C++ 实现)

2024-02-10 22:52

本文主要是介绍《剑指 Offer》专项突破版 - 面试题 38、39 和 40 : 通过三道面试题详解单调栈(C++ 实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

面试题 38 : 每日温度

面试题 39 : 直方图最大矩形面积

方法一、暴力求解

方法二、递归求解

方法三、单调栈法

面试题 40 : 矩阵中的最大矩形


 


面试题 38 : 每日温度

题目

输入一个数组,它的每个数字是某天的温度。请计算每天需要等几天才会出现更高的温度。例如,如果输入数组 [35, 31, 33, 36, 34],那么输出为 [3, 1, 1, 0, 0]。由于第 1 天的温度是 35℃,要等 3 天才会出现更高的温度 36℃,因此对应的输出为 3。第 4 天的温度是 36℃,后面没有更高的温度,它对应的输出是 0。其他的以此类推。

分析

解决这个问题的直观方法很多人很快就能想到。对于数组中的每个温度,可以扫描它后面的温度直到发现一个更高的温度为止。如果数组包含 n 天的温度,那么这种思路的时间复杂度是 O(n^2)。

下面通过一个具体的例子来分析这个问题的规律。假设输入的表示每天的温度的数组为 [35, 31, 33, 36, 34]。第 1 天的温度是 35℃,此时还不知道后面会不会有更高的温度,所以先将它保存到一个数据容器中。第 2 天的温度是 31℃,比第 1 天温度低,同样也保存到数据容器中。第 3 天的温度是 33℃,比第 2 天的温度高,由此可知,第 2 天需要等 1 天才有更高的温度。

每次从数组中读取某一天的温度,并且都将其与之前的温度(也就是已经保存在数据容器中的温度)相比较。从离它较近的温度开始比较看起来是一个不错的选择,也就是后存入数据容器中的温度先拿来比较,这契合 "后进先出" 的特性,所以可以考虑用栈来实现这个数据容器。同时,需要计算出现更高温度的等待天数,存入栈中的数据应该是温度在数组中的下标。等待的天数就是两个温度在数组中的下标之差

因此,处理到第 3 天的温度时,栈的状态为 [0, 1]。在知道第 2 天需要等 1 天将出现更高的温度之后,它就没有必要再保存在栈中,将它出栈。第 3 天的温度也需要入栈,以便和以后的温度比较,此时栈的状态为 [0, 2]。

第 4 天的温度是 36℃。从栈顶开始与之前的温度比较,它比第 3 天的温度 33℃ 高,因此第 3 天需要等 1 天就会出现更高的温度,这一天在数组中的下标 2 出栈。它也比第 1 天的温度 35℃ 高,因此第 1 天需要等 3 天才会出现更高的温度,这一天在数组中的下标 0 出现。然后将第 4 天在数组中的下标 3 入栈,以便和以后的温度比较。此时栈的状态为 [3]。最后一天的温度是 34℃,比位于栈顶的第 4 天的温度低,将其入栈,最终栈的状态是 [3, 4]。最终留在栈中的两天的后面都没有出现更高的温度。

解决这个问题的思路总结起来就是用一个栈保存每天的温度在数组中的下标。每次从数组中读取一个温度,然后将其与栈中保存的温度(根据下标可以得到温度)进行比较。如果当前温度比位于栈顶的温度高,那么就能知道位于栈顶那一天需要等待几天才会出现更高的温度。然后出栈 1 次,将当前温度与下一个位于栈顶的温度进行比较。如果栈中已经没有比当前温度低的温度,则将当前温度在数组中的下标入栈

代码实现

class Solution {
public:vector<int> dailyTemperatures(vector<int>& temperatures) {int n = temperatures.size();vector<int> result(n, 0);stack<int> st;for (int i = 0; i < n; ++i){while (!st.empty() && temperatures[i] > temperatures[st.top()]){result[st.top()] = i - st.top();st.pop();}
​st.push(i);}return result;}
};

保存在栈中的温度(通过数组下标可以得到温度)是递减排序的。这是因为如果当前温度比位于栈顶的温度高,位于栈顶的温度将出栈,所以每次入栈时当前温度一定比位于栈顶的温度低或相同

假设输入数组的长度为 n。虽然上述代码中有一个嵌套的二重循环,但它的时间复杂度是 O(n),这是因为数组中每个温度入栈、出栈各 1 次。这种解法的空间复杂度也是 O(n)。


面试题 39 : 直方图最大矩形面积

题目

直方图是由排列在同一基线上的相邻柱子组成的图形。输入一个由非负数组成的数组,数组中的数字是直方图中柱子的高。求直方图中最大矩形面积。假设直方图中柱子的宽都为 1。例如,输入数组 [3, 2, 5, 4, 6, 1, 4, 2],其对应的直方图如下图所示,该直方图中最大矩形面积为 12,如阴影部分所示。

分析

矩形的面积等于宽乘以高,因此只要能确定每个矩形的宽和高,就能计算它的面积。如果直方图中一个矩形从下标为 i 的柱子开始,到下标为 j 的柱子结束,那么这两根柱子之间的矩形(含两端的柱子)的宽是 j - i + 1。矩形的高就是两根柱子之间的所有柱子最矮的高度。例如,上图中从下标为 2 的柱子到下标为 4 的柱子之间的矩形宽度是 3,矩形的高度最多只能是 4,即它们之间 3 根柱子最矮的高度。

方法一、暴力求解

如果能逐一找出直方图中所有的矩形并比较它们的面积,就能得到最大矩形面积。下面使用嵌套的二重循环遍历所有矩形,并比较它们的面积。

class Solution {
public:int largestRectangleArea(vector<int>& heights) {int maxArea = 0;for (int i = 0; i < heights.size(); ++i){int minHeight = heights[i];for (int j = i; j < heights.size(); ++j){if (heights[j] < minHeight)minHeight = heights[j];int area = minHeight * (j - i + 1);
​if (area > maxArea)maxArea = area;}}return maxArea;}
};

这种解法的时间复杂度是 O(n^2),空间复杂度是 O(1)。

方法二、递归求解

上图的直方图中最矮的柱子在数组中的下标是 5,它的高度是 1。这个直方图的最大矩形有以下 3 种可能:

  1. 第 1 种是矩形通过这根最矮的柱子。通过最矮的柱子的最大矩形的高度是 1,宽度是 7

  2. 第 2 种是矩形的起始柱子和终止柱子都在最矮的柱子的左侧,也就是从下标为 0 的柱子到下标为 4 的柱子的直方图的最大矩形

  3. 第 3 种是矩形的起始柱子和终止柱子都在最矮的柱子的右侧,也就是从下标为 6 的柱子到下标为 7 的柱子的直方图的最大矩形

第 2 种和第 3 种本质上来说和求整个直方图的最大矩形面积是同一个问题,可以调用递归函数解决

class Solution {
private:int _largestRectangleArea(vector<int>& heights, int left, int right){if (left > right)return 0;if (left == right)return heights[left];
​int minHeightIndex = left;for (int i = left + 1; i <= right; ++i){if (heights[i] < heights[minHeightIndex])minHeightIndex = i;}int maxArea = heights[minHeightIndex] * (right - left + 1);int area1 = _largestRectangleArea(heights, left, minHeightIndex - 1);int area2 = _largestRectangleArea(heights, minHeightIndex + 1, right);if (area1 > maxArea)maxArea = area1;if (area2 > maxArea)maxArea = area2;return maxArea;}
​
public:int largestRectangleArea(vector<int>& heights) {return _largestRectangleArea(heights, 0, heights.size() - 1);}
};

假设输入数组的长度为 n。如果每次都能将 n 根柱子分成两根柱子数量为 n / 2 的子直方图,那么递归调用的深度为 O(logn),整个递归算法的时间复杂度是 O(nlogn)。但如果直方图中柱子的高度是排序的(递增排序或递减排序),那么每次最矮的柱子都位于直方图的一侧,递归调用的深度就是 O(n),此时递归算法的时间复杂度也变成 O(n^2)

递归算法的空间复杂度取决于调用栈的深度,因此平均空间复杂度是 O(logn),最坏情况下的空间复杂度是 O(n)

方法三、单调栈法

计算以每根柱子为顶的最大矩形面积,比较这些矩形面积就能得到直方图中的最大矩形面积

以某根柱子为顶的最大矩形,一定是从该柱子向两侧延伸直到遇到比它矮的柱子,这个最大矩形的高就是该柱子的高,最大矩形的宽是两侧比它矮的柱子中间的间隔。例如,为了求上图所示的直方图中以下标为 3 的柱子为顶的最大矩形面积,应该从该柱子开始向两侧延伸,左侧比它矮的柱子的下标是 1,右侧比它矮的柱子的下标是 5。因此,以下标为 3 的柱子为顶的最大矩形的高为 4,宽为 3(左右两侧比它矮的柱子的下标之差再减 1,即 5 - 1 - 1)。

class Solution {
public:int largestRectangleArea(vector<int>& heights) {int n = heights.size();vector<int> left(n, -1);vector<int> right(n, n);
​stack<int> st;for (int i = n - 1; i >= 0; --i){while (!st.empty() && heights[i] < heights[st.top()]){left[st.top()] = i;st.pop();}st.push(i);}st = stack<int>();for (int i = 0; i < n; ++i){while (!st.empty() && heights[i] < heights[st.top()]){right[st.top()] = i;st.pop();}st.push(i);}
​int maxArea = 0;for (int i = 0; i < n; ++i){int area = heights[i] * (right[i] - left[i] - 1);if (area > maxArea)maxArea = area;}return maxArea;} 
};

这种解法的时间复杂度是 O(n),空间复杂度也是 O(n)

 


面试题 40 : 矩阵中的最大矩形

题目

请在一个由 0、1 组成的矩阵中找出最大的只包含 1 的矩形并输出它的面积。例如,在下图的矩阵中,最大的只包含 1 的矩形如阴影部分所示,它的面积是 6。

分析

面试题 2.4 是关于最大矩形的,这个题目还是关于最大矩形的,它们之间有没有某种联系?如果能从矩阵中找出直方图,那么就能通过计算直方图中的最大矩形面积来计算矩阵中的最大矩形面积

直方图是由排列在同一基线上的相邻柱子组成的图形。由于题目要求矩形中只包含数字 1,因此将矩阵中上下相邻的值为 1 的格子看成直方图中的柱子。如果分别以上图中的矩阵的每行为基线,就可以得到 4 个由数字 1 的格子组成的直方图,如下图所示。

在将矩阵转换成多个直方图之后,就可以计算并比较每个直方图的最大矩形面积,所有直方图中的最大矩形就是整个矩阵中的最大矩形

代码实现

class Solution {
private:int largestRectangleArea(vector<int>& heights) {int n = heights.size();vector<int> left(n, -1);vector<int> right(n, n);
​stack<int> st;for (int i = n - 1; i >= 0; --i){while (!st.empty() && heights[i] < heights[st.top()]){left[st.top()] = i;st.pop();}st.push(i);}st = stack<int>();for (int i = 0; i < n; ++i){while (!st.empty() && heights[i] < heights[st.top()]){right[st.top()] = i;st.pop();}st.push(i);}
​int maxArea = 0;for (int i = 0; i < n; ++i){int area = heights[i] * (right[i] - left[i] - 1);if (area > maxArea)maxArea = area;}return maxArea;}public:int maximalRectangle(vector<string>& matrix) {if (matrix.size() == 0 || matrix[0].size() == 0)return 0;
​int result = 0;vector<int> heights(matrix[0].size(), 0);for (int i = 0; i < matrix.size(); ++i){for (int j = 0; j < matrix[i].size(); ++j){if (matrix[i][j] == '0')heights[j] = 0;else++heights[j];}
​int maxArea = largestRectangleArea(heights);if (maxArea > result)result = maxArea;}return result;}
};

这篇关于《剑指 Offer》专项突破版 - 面试题 38、39 和 40 : 通过三道面试题详解单调栈(C++ 实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698211

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础