leetcode 3027. 人员站位的方案数 II【离散化前缀和+枚举】

2024-02-10 15:28

本文主要是介绍leetcode 3027. 人员站位的方案数 II【离散化前缀和+枚举】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题链接:3027. 人员站位的方案数 II

题目描述:

给你一个  n x 2 的二维数组 points ,它表示二维平面上的一些点坐标,其中 points[i] = [xi, yi] 。

我们定义 x 轴的正方向为  (x 轴递增的方向),x 轴的负方向为  (x 轴递减的方向)。类似的,我们定义 y 轴的正方向为  (y 轴递增的方向),y 轴的负方向为  (y 轴递减的方向)。

你需要安排这 n 个人的站位,这 n 个人中包括 liupengsay 和小羊肖恩 。你需要确保每个点处 恰好 有 一个 人。同时,liupengsay 想跟小羊肖恩单独玩耍,所以 liupengsay 会以 liupengsay 的坐标为 左上角 ,小羊肖恩的坐标为 右下角 建立一个矩形的围栏(注意,围栏可能  包含任何区域,也就是说围栏可能是一条线段)。如果围栏的 内部 或者 边缘 上有任何其他人,liupengsay 都会难过。

请你在确保 liupengsay 不会 难过的前提下,返回 liupengsay 和小羊肖恩可以选择的 点对 数目。

注意,liupengsay 建立的围栏必须确保 liupengsay 的位置是矩形的左上角,小羊肖恩的位置是矩形的右下角。比方说,以 (1, 1) ,(1, 3) ,(3, 1) 和 (3, 3) 为矩形的四个角,给定下图的两个输入,liupengsay 都不能建立围栏,原因如下:

  • 图一中,liupengsay 在 (3, 3) 且小羊肖恩在 (1, 1) ,liupengsay 的位置不是左上角且小羊肖恩的位置不是右下角。
  • 图二中,liupengsay 在 (1, 3) 且小羊肖恩在 (1, 1) ,小羊肖恩的位置不是在围栏的右下角。

输入输出描述:

示例 1:

输入:points = [[1,1],[2,2],[3,3]]
输出:0
解释:没有办法可以让 liupengsay 的围栏以 liupengsay 的位置为左上角且小羊肖恩的位置为右下角。所以我们返回 0 。

示例 2:

​编辑

输入:points = [[6,2],[4,4],[2,6]]
输出:2
解释:总共有 2 种方案安排 liupengsay 和小羊肖恩的位置,使得 liupengsay 不会难过:
- liupengsay 站在 (4, 4) ,小羊肖恩站在 (6, 2) 。
- liupengsay 站在 (2, 6) ,小羊肖恩站在 (4, 4) 。
不能安排 liupengsay 站在 (2, 6) 且小羊肖恩站在 (6, 2) ,因为站在 (4, 4) 的人处于围栏内。

示例 3:

​编辑

输入:points = [[3,1],[1,3],[1,1]]
输出:2
解释:总共有 2 种方案安排 liupengsay 和小羊肖恩的位置,使得 liupengsay 不会难过:
- liupengsay 站在 (1, 1) ,小羊肖恩站在 (3, 1) 。
- liupengsay 站在 (1, 3) ,小羊肖恩站在 (1, 1) 。
不能安排 liupengsay 站在 (1, 3) 且小羊肖恩站在 (3, 1) ,因为站在 (1, 1) 的人处于围栏内。
注意围栏是可以不包含任何面积的,上图中第一和第二个围栏都是合法的。

提示:

  • 2 <= n <= 1000
  • points[i].length == 2
  • -10^9 <= points[i][0], points[i][1] <= 10^9
  • points[i] 点对两两不同。

解题思路:

方法1:离散化前缀和

这个题目看一眼就知道是二维前缀和,只不过值域非常大,需要离散化,我们可以将x,y坐标放在一起离散化,也可以分开离散化,分开离散化时间和空间要求都低一些,所以我们分开离散化即可,由于需要使用前缀和,所以离散x的同时肯定还要离散化x-1,离散化y的同时还要离散化y-1。

时间复杂度:O(n^2),但是n最大2000。

空间复杂度:O(n^2),n最大2000。

按道理这个时间复杂度是能过的,但是由于这个双周赛case设计有问题,数据非常弱,导致比赛时很多O(n^3)暴力都水过去了,然后赛后为了卡掉那些暴力,加了一些case,可能还把时间限制放的很低,导致这个写法有时候能过,有时候会超时,相当于这个做法也被卡常了,我已经试过了,交了几发,有时候能过,有时候过不了。

离散化前缀和cpp代码如下:

const int N=2010;
int s[N][N];
class Solution {
public:int numberOfPairs(vector<vector<int>>& points) {unordered_map<int,int>mp1,mp2; //mp1用于离散化x坐标,mp2离散化y坐标vector<int>nums1,nums2;int n=points.size();int cnt1=0,cnt2=0;for(auto& t:points){int x=t[0],y=t[1];nums1.push_back(x);nums1.push_back(x-1);nums2.push_back(y);nums2.push_back(y-1);}//x,y坐标分别离散化sort(nums1.begin(),nums1.end());sort(nums2.begin(),nums2.end());for(int i=0;i<nums1.size();i++){int v1=nums1[i],v2=nums2[i];if(i==0)mp1[v1]=++cnt1,mp2[v2]=++cnt2;else {if(nums1[i]!=nums1[i-1])mp1[nums1[i]]=++cnt1;if(nums2[i]!=nums2[i-1])mp2[nums2[i]]=++cnt2;}}//根据离散化之后x,y坐标数,初始化前缀和int mx1=cnt1,mx2=cnt2;// vector<vector<int>>s(mx1+1,vector<int>(mx2+1));for(int i=1;i<=mx1;i++)for(int j=1;j<=mx2;j++)s[i][j]=0;for(auto&t:points){int x=t[0],y=t[1];s[mp1[x]][mp2[y]]++;}//预处理前缀和for(int i=1;i<=mx1;i++)for(int j=1;j<=mx2;j++)s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];//枚举int ans=0;for(int i=0;i<n;i++){int x1=mp1[points[i][0]],y1=mp2[points[i][1]];for(int j=0;j<n;j++){if(i==j)continue;int x2=mp1[points[j][0]],y2=mp2[points[j][1]];if(x2>=x1 && y2<=y1){if(s[x2][y1]-s[x2][y2-1]-s[x1-1][y1]+s[x1-1][y2-1]==2){ans++;}}}}return ans;}
};

方法二:挖掘性质+枚举

首先题目说了一个在左上角,一个在右下角,从左往右横坐标x递增,从上往下纵坐标递减,所以我们从按照横坐标从小到达排序,横坐标相同时,纵坐标从大到小排序,固定i,从j=i+1枚举,那么j的纵坐标必须小于等于i的纵坐标,同时j的纵坐标必须大于前面枚举的所有点的纵坐标,才能保证i为左上角,j为右下角的矩形里面和边界没有其他点。

时间复杂度:O(n^2)

空间复杂度:O(1),不考虑排序使用的栈空间。

挖掘性质+枚举cpp代码如下:

class Solution {
public:int numberOfPairs(vector<vector<int>>& points) {sort(points.begin(),points.end(),[&](vector<int>&A,vector<int>&B){return A[0]!=B[0]?A[0]<B[0]:A[1]>B[1];});int ans=0,n=points.size();for(int i=0;i<n;i++){int y1=points[i][1];int max_y=-1e9-1;for(int j=i+1;j<n;j++){int y=points[j][1];if(y<=y1 && y>max_y){ans++;max_y=y;}}}return ans;}
};

这篇关于leetcode 3027. 人员站位的方案数 II【离散化前缀和+枚举】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/697455

相关文章

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

正则表达式r前缀使用指南及如何避免常见错误

《正则表达式r前缀使用指南及如何避免常见错误》正则表达式是处理字符串的强大工具,但它常常伴随着转义字符的复杂性,本文将简洁地讲解r的作用、基本原理,以及如何在实际代码中避免常见错误,感兴趣的朋友一... 目录1. 字符串的双重翻译困境2. 为什么需要 r?3. 常见错误和正确用法4. Unicode 转换的

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R