决策树(Decision Tree) | 算法实现

2024-02-10 15:08

本文主要是介绍决策树(Decision Tree) | 算法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01 起

决策树相关的理论知识,我们在这篇文章中有详细讲解。

今天我们基于决策树原理,写一个函数来训练决策树吧。本文基于ID3算法构建决策树,此算法构建决策树的中心思想是:

始终寻找信息增益最大的特征作为当前分支的最优特征

信息增益,即:g(D,A)=H(D)-H(D|A)


02 实现思路(ID3)

利用训练数据,训练决策树,主要思路如下,共8个步骤,重点在于递归

  1. 自定义信息熵计算函数,用于计算数据集的信息熵
  2. 自定义数据划分函数,用于根据指定特征的指定取值,划分数据集
  3. step2的自数据集作为输入给step1的函数,可以计算出按某指定特征的某指定取值(A=ai)划分的数据集的信息熵H(Di),同时计算按某指定特征的某指定取值(A=ai)划分的数据集的样本概率|Di|/|D|
  4. 遍历该特征各个取值,计算各取值下划分的数据集的信息熵H(Di)和样本概率|Di|/|D|,相乘,再求和得到得到特征A对数据集D的经验条件熵H(D|A)
  5. 计算特征A对数据集的信息增益g(D,A)=H(D)-H(D|A)
  6. 以此类推,计算各特征对数据集的信息增益,取信息增益最大的特征为最佳划分特征,得到树T1
  7. 对T1各结点继续step3-6,选择信息增益最大的特征,继续划分数据,得到新的决策树
  8. 直到信息增益小于阈值,或无特征可划分,或每个分支下的所有实例都具有相同的分类,决策树完成

下面我们基于这8个步骤的思路,给出python代码。


03 实现

step1 自定义信息熵计算函数,用于计算数据集的信息熵

"""
输入:数据集,每一行是一条数据,最后一列是各条数据集的类别
输出:该数据集的信息熵
思路:
建立一个字典,对数据集各数据的类别计数,
从而计算各类别出现频率(作为概率pi),
最后调用信息熵公式计算 H(D)=-求和(pi*logpi)
"""
def calEntropy(dataset):n=len(dataset)labelCounts={}#对数据集各数据的类别计数for data in dataset:datalabel=data[-1] #取data最后一列,类别列if datalabel not in labelCounts.keys():labelCounts[datalabel]=0labelCounts[datalabel]+=1entropy=0.0#计算各类别出现频率(作为概率pi),调用信息熵公式计算 H(D)=-求和(pi*logpi)for key in labelCounts.keys():prob=float(labelCounts[key])/nentropy -= prob*log(prob,2)return entropy

step2 自定义数据划分函数,用于根据指定特征的指定取值,划分数据集

"""
输入:数据集、特征所在列索引、特征取值
输出:满足指定特征等于指定取值的数据子集
"""
def splitDataset(dataset,index,value):subDataset=[]for data in dataset:if data[index]==value:#抽取除了data[index]的内容(一个特征用于计算其对数据集的经验条件熵时,不需要此特征在子数据集中)splitData=data[:index] #取索引之前的元素splitData.extend(data[index+1:]) #再合并索引之后的元素subDataset.append(splitData)return subDataset

step3~6 选择信息增益最大的特征作为数据集划分特征

"""
输入:数据集
输出:该数据集的最佳划分特征
"""
def chooseFeature(dataset):#初始化numFeature=len(dataset[0])-1 #因为最后一列是类别baseEntropy=calEntropy(dataset) #H(D)bestInfoGain=0.0bestFeatureIndex=-1#创建特征A各取值a的列表for i in range(numFeature):featureList=[data[i] for data in dataset]uniqueValue=set(featureList)empEntropy=0.0 #初始化特征A对数据集D的经验条件熵H(D|A)#计算特征A各取值a的信息熵H(Di)和样本概率|Di|/|D|,并相乘for value in uniqueValue:subDataset=splitDataset(dataset,i,value) #(列索引为i的特征)特征A取value值所划分的子数据集prob=len(subDataset)/float(len(dataset)) #计算|Di|/|D|empEntropy += prob*calEntropy(subDataset) #H(D|A)#取信息增益最大的特征为最佳划分特征infoGain=baseEntropy-empEntropy #信息增益if infoGain>bestInfoGain:bestInfoGain=infoGainbestFeatureIndex=ireturn bestFeatureIndex

step7~8 递归构建决策树

def majorClass(classList):classCount={}for vote in classList:if vote not in classCount.keys():classCount[vote]=0classCount[vote]+=1#对classCount按value降序排序sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)return sortedClassCount[0][0] #返回类别最大的类别名"""
输入:数据集(list类型),数据集特征列表(按在数据集的位置排序)(list类型)
输出:该数据集的决策树
思路:【递归】1. 若数据集属于同一类,则返回该类别,划分停止2. 若数据集所有特征已经遍历,返回当前计数最多的类别为该结点类别,划分停止3. 否则继续分支,调用chooseFeature()函数,选择当前数据集最优特征4. 遍历当前最优特征各属性值,划分数据集,并递归调用自身createTree()构建子数据集的决策树5. 完成
"""
def createTree(dataset,featureLabels):classList=[data[-1] for data in dataset] #取数据集各数据类别#若数据集属于同一类,则返回该类别,划分停止if classList.count(classList[0])==len(classList):return classList[0]#若数据集所有特征已经遍历,返回当前计数最多的类别为该结点类别,划分停止if len(dataset[0])==1:return majorClass(classList)#否则继续分支,调用chooseFeature()函数,选择当前数据集最优特征bestFeatureIndex=chooseFeature(dataset)bestFeature=featureLabels[bestFeatureIndex]#用于存储决策树,字典结构存储树的所有信息,并可体现包含关系desitionTree={bestFeature:{}} del(featureLabels[bestFeatureIndex]) #删除已被用于划分数据的特征#得到当前最优划分特征的各属性值featureValues=[data[bestFeatureIndex] for data in dataset]uniqueValues=set(featureValues)#遍历当前最优特征各属性值,划分数据集,并递归调用自身createTree()构建子数据集的决策树for value in uniqueValues:#得到已删除当前最优划分特征的特征列表,用于递归调用subFeatureLabels=featureLabels[:] #用当前最优划分特征的指定值分割子数据集,用于递归调用subData=splitDataset(dataset,bestFeatureIndex,value) desitionTree[bestFeature][value]=createTree(subData,subFeatureLabels)return desitionTree

至此,决策树训练函数完成,下面我们利用西瓜分类数据集来简单测试一下吧~


04 测试

西瓜分类数据集长这样,基于西瓜的各个特征,判断西瓜是好瓜还是坏瓜:

我们直接调用刚才写好的决策树训练函数,看看西瓜分类数据的决策树吧

watermalon=pd.read_csv(r"D:\python\data\watermalon.txt",sep="\t")
watermalon_list=np.array(watermalon).tolist() #构建数据集
features=watermalon.columns.tolist()[0:-1] #提取特征列表
my_tree=createTree(watermalon_list,features)

最后训练得到的决策树长这样,这是一个嵌套格式的字典,每个子字典代表了一个分支


05 总结

本文基于ID3算法,造了个轮子,给出决策树训练函数,输入列表类型的数据集和数据集的特征列表,可以数据该数据集的分类决策树,得到的决策树使用嵌套格式的字典存储。

但是,嵌套格式的字典并不直观,不能一目了然地观察决策树结构。

别担心,下期我们会就此决策树,给出函数来绘制决策树,帮助我们更加直观地理解训练出来的决策树结构。

同时,我们会在下期给出决策树的利用方法——如何利用训练好的决策树分类测试数据?

敬请期待~~


06 参考

  1. 《统计学习方法》 李航 Chapter5
  2. 《机器学习实战》 Peter Harrington Chapter3

这篇关于决策树(Decision Tree) | 算法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/697423

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句