【机器学习】合成少数过采样技术 (SMOTE)处理不平衡数据(附代码)

本文主要是介绍【机器学习】合成少数过采样技术 (SMOTE)处理不平衡数据(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、简介

不平衡数据集是机器学习和人工智能中普遍存在的挑战。当一个类别中的样本数量明显超过另一类别时,机器学习模型往往会偏向大多数类别,从而导致性能不佳。

合成少数过采样技术 (SMOTE) 已成为解决数据不平衡问题的强大且广泛采用的解决方案。

在本文中,我们将探讨 SMOTE 的概念、其工作原理、优点、局限性及其对提高人工智能模型的性能和公平性的重大影响。

2、SMOTE

SMOTE 背后的主要思想是通过生成合成样本来弥合少数群体和多数群体之间的差距。

以下是 SMOTE 工作原理的分步说明:

2.1识别少数样本:

第一步涉及识别数据集中属于少数类别的样本。

2.2 识别K近邻:

对于每个少数样本,SMOTE 识别其在特征空间中的 K-近邻。通常,欧几里德距离度量用于测量数据点之间的相似性。

2.3 合成样本生成:

一旦识别出邻居,SMOTE 就会选择随机邻居并计算少数样本的特征向量与其所选邻居之间的差异。

然后将该差异乘以 0 到 1 之间的随机数,并将其添加到少数样本的特征向量中。

此过程会创建新的合成样本,这些样本位于少数样本与其所选邻居之间的线段上

重复生成合成样本的过程,直到达到所需的类别平衡水平。

3.SMOTE的好处

3.1 提高模型性能:

通过解决类不平衡问题,SMOTE 使 AI 模型能够更好地识别模式并跨类进行泛化,从而提高整体性能。

3.2 减轻偏差:

SMOTE 有助于减少类别不平衡带来的偏差,确保模型不会以牺牲少数类别为代价而偏向多数类别。

3.3 数据效率:

SMOTE 有效地放大了少数类中的样本数量,而无需收集额外的数据,使其成为一种资源高效的技术。

3.4和各种算法的兼容性:

SMOTE 与算法无关,这意味着它可以与各种 AI 算法一起使用,包括决策树、支持向量机、神经网络等。

虽然 SMOTE 已被证明是一种有价值的工具,但在应用该技术时必须意识到其局限性并考虑某些方面:

1.过度拟合风险:如果使用不当,SMOTE 可能会导致过度拟合,尤其是在生成过多合成样本时。适当的交叉验证对于准确评估模型性能至关重要。

2.潜在噪声:SMOTE 生成的合成样本可能无法准确代表真实世界的数据实例,从而引入可能对模型性能产生负面影响的噪声。

3.k 的合适选择:SMOTE 的性能受到参数 k 的选择的影响,它决定了要考虑的最近邻居的数量。k 值不合适可能会导致不良结果

4.代码

下面是合成少数过采样技术 (SMOTE) 的 Python 实现:

import numpy as np
from sklearn.neighbors import NearestNeighborsdef SMOTE(X, y, N, k=5):"""合成少数类过采样技术(SMOTE)参数:X (numpy数组): 包含数据点的特征矩阵。y (numpy数组): 对应的标签数组(多数类为0,少数类为1)。N (int): 生成的合成样本数量。k (int, 可选): 考虑的最近邻居数量,默认为5。返回:X_synthetic (numpy数组): 包含生成样本的合成特征矩阵。y_synthetic (numpy数组): 合成样本对应的标签数组。"""# 分离多数类和少数类样本X_majority = X[y == 0]X_minority = X[y == 1]# 计算每个少数类样本需要生成的合成样本数量N_per_sample = N // len(X_minority)# 如果k大于少数样本数量,则将其减少到可能的最大值k = min(k, len(X_minority) - 1)# 初始化列表以存储合成样本和相应的标签synthetic_samples = []synthetic_labels = []# 在少数类样本上拟合k近邻knn = NearestNeighbors(n_neighbors=k)knn.fit(X_minority)for minority_sample in X_minority:# 查找当前少数类样本的k个最近邻居_, indices = knn.kneighbors(minority_sample.reshape(1, -1), n_neighbors=k)# 随机选择k个邻居并创建合成样本for _ in range(N_per_sample):neighbor_index = np.random.choice(indices[0])neighbor = X_minority[neighbor_index]# 计算当前少数类样本和邻居之间的差异difference = neighbor - minority_sample# 生成一个0到1之间的随机数alpha = np.random.random()# 创建一个合成样本作为少数类样本和邻居的线性组合synthetic_sample = minority_sample + alpha * difference# 将合成样本及其标签追加到列表中synthetic_samples.append(synthetic_sample)synthetic_labels.append(1)# 将列表转换为numpy数组X_synthetic = np.array(synthetic_samples)y_synthetic = np.array(synthetic_labels)# 将原始多数类样本与合成样本合并X_balanced = np.concatenate((X_majority, X_synthetic), axis=0)y_balanced = np.concatenate((np.zeros(len(X_majority)), y_synthetic), axis=0)return X_balanced, y_balanced

SMOTE函数接受特征矩阵X、对应的标签数组y、要生成的合成样本数N以及最近邻居数k(默认设置为5)。

该函数返回包含生成样本的合成特征矩阵X_synthetic和对应的标签数组y_synthetic。

请注意,这个实现假设是二元分类,其中少数类标记为1,多数类标记为0。原始的多数类样本被保留,合成样本仅为少数类创建。

要使用SMOTE函数,您可以使用您的数据集调用它,并指定您想要生成的合成样本数量,例如:

X_balanced, y_balanced = SMOTE (X_train, y_train, N= 1000 )

在这个示例中,SMOTE函数将生成1000个合成样本来平衡训练数据,X_balanced和y_balanced分别包含增强的特征矩阵和对应的标签。

下面是一个如何定义X_train和y_train为numpy数组的简单二元分类问题示例:

import numpy as np # 具有 10 个样本和 2 个特征的示例特征矩阵
X_train X_train = np.array([ [ 1.0, 2.0 ], [ 2.0, 3.0 ], [ 3.0, 4.0 ], [ 4.0, 5.0 ], [ 5.0, 6.0 ], [ 6.0, 7.0 ], [ 7.0, 8.0 ], [ 8.0, 9.0 ], [ 9.0, 10.0 ], [ 10.0, 11.0 ] 
]) # 标签数组示例 y_train (0 代表多数类,1 代表少数类)y_train = np.array([ 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 ])

在这个示例中,X_train是一个二维numpy数组,代表具有10个样本(行)和2个特征(列)的特征矩阵。每行对应一个数据样本,每列对应一个特定的特征。

y_train是一个一维numpy数组,代表X_train中样本的对应标签。在这个示例中,多数类被标记为0,少数类被标记为1。

您可以使用前面代码片段中提供的SMOTE函数来平衡X_train和y_train数据集,并为少数类创建合成样本。例如:

X_balanced, y_balanced = SMOTE(X_train, y_train, N=1000)

调用SMOTE函数后,X_balanced和y_balanced将包含用合成样本增强的特征矩阵和对应的标签,以平衡数据集。

生成的合成样本数量(在这个示例中为1000)可以根据不平衡程度和您的具体需求进行调整。

5.结语

合成少数类过采样技术(SMOTE)已成为解决AI中不平衡数据集挑战的一个强大而有效的解决方案。

通过生成合成样本,SMOTE平衡了类别分布,使AI模型能够做出更好的决策,减少偏见并提高性能。

然而,使用SMOTE时必须谨慎,考虑其局限性,并确保合成数据的质量和相关性。

随着AI的不断发展,SMOTE和类似技术将继续作为追求更准确、公平和稳健AI模型的关键工具。

这篇关于【机器学习】合成少数过采样技术 (SMOTE)处理不平衡数据(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/696853

相关文章

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal