代码随想录算法训练营day 29|第七章 回溯算法part05

2024-02-09 21:28

本文主要是介绍代码随想录算法训练营day 29|第七章 回溯算法part05,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

491.递增子序列 

本题和大家刚做过的 90.子集II 非常像,但又很不一样,很容易掉坑里。 

代码随想录

视频讲解:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili

这道题本身没那么难想到,但是有很多要注意点:

  1. 一旦path的size大于1,就要收集.
  2. 使用容器要记住当次for循环已经遍历过的值,这样来去重.可以使用unordered_set(集合),也可以使用数组(提前声明容量为201,然后以每次的数值为下标来验证本次for循环是否已经使用过相等的值),注意如果用数组的话,会更快更方便查找每次是否遍历过,以空间换时间,但是要提前初始化.
  3. 每次for循环要判断path内是否有数了,如果有数了那就要判断当前的数值是否不小于最后一个数(也就是最大的那个).
class Solution {
public:vector<vector<int>> res;vector<int> path;void backtracking(vector<int>& nums,int begin){        if(path.size()>1){res.push_back(path);}int used[201]={0};for(int i=begin;i<nums.size();i++){if(path.size()){if(nums[i]<path.back()) continue;                }if(used[nums[i]+100]) continue;path.push_back(nums[i]);backtracking(nums,i+1);path.pop_back();used[nums[i]+100]=1;}}vector<vector<int>> findSubsequences(vector<int>& nums) {res.clear();path.clear();backtracking(nums,0);return res;}
};

46.全排列 

本题重点感受一下,排列问题 与 组合问题,组合总和,子集问题的区别。 为什么排列问题不用 startIndex 

代码随想录

视频讲解:组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列_哔哩哔哩_bilibili

这道题总体来讲也比较简单,主要注意这几个点:

  1. path的收集在它的size恰好等于nums的大小的时候进行,并且需要在这时候直接返回,因为是最终时刻收集结果而不是像上一道题一样边递归边收集.
  2. 这时候就需要每次for循环都从0开始,全排列不是顺序收集数字的而是可能跳着收集数字,所以没有递归遍历的规律,但需要每次知道上层递归都已经使用过哪些数,所以要传入used数组来记录已经排列进去的数字.
  3. used数组可以直接设置成nums数组大小,因为已经知道nums数组不重复,所以直接可以用该数字的下标来表示它在used数组中的位置,而且for循环内设置先显示用过该数字,递归结束之后再显示没有用过该数字,因为同层递归表示不同的排列顺序,而更深层的递归用来一点一点得到这个顺序的全排列.
class Solution {
public:vector<vector<int>> res;vector<int> path;void backtracking(vector<int>& nums,vector<bool>& used){if(path.size()==nums.size()){res.push_back(path);return;}for(int i=0;i<nums.size();i++){if(used[i]) continue;used[i]=true;path.push_back(nums[i]);backtracking(nums,used);path.pop_back();used[i]=false;}}vector<vector<int>> permute(vector<int>& nums) {vector<bool> used(nums.size(),false);backtracking(nums,used);return res;}
};

47.全排列 II 

本题 就是我们讲过的 40.组合总和II 去重逻辑 和 46.全排列 的结合,可以先自己做一下,然后重点看一下 文章中 我讲的拓展内容。 used[i - 1] == true 也行,used[i - 1] == false 也行 

代码随想录

视频讲解:回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili

去重是这道题的重点,也是区别于上一题的关键,注意:

  1. 去重采取的是先将nums数组排列然后再凭借相等的两个数必然相邻的方法,重点要理解去重是要避免两个相同的数字在同一个for循环中(表示某次排序的同一个位置)反复选用.
  2. 然后还要避免已经参与了本次排序的元素反复参与排序,具体要使用used数组来避免,和上一题一样.
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {// used[i - 1] == true,说明同一树枝nums[i - 1]使用过// used[i - 1] == false,说明同一树层nums[i - 1]使用过// 如果同一树层nums[i - 1]使用过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == false) {used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}}
public:vector<vector<int>> permuteUnique(vector<int>& nums) {result.clear();path.clear();sort(nums.begin(), nums.end()); // 排序vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};

这里还有一点值得注意,就是将下面的代码(去重的关键)变成下下面的代码也是行得通的.

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;
}

改为:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {continue;
}

这是因为:
例: 1 1 1 2
used[i-1]==false 这句话表达的其实是上个数并没有在本次排序中,没有在本次序列中,就意味着它一定在之前的排列序列中在相同位置出现了,如果这个数和当前的数相等的话,就意味着同样的位置选了两次相同的数字.
而下一句代码意味着和这个数相等的数(上个数)如果已经出现在了本次序列中,就不能在当前位置选择这个数,这句话就导致在第一次遇到这个数值的数的时候是永远没办法得到完整序列的,因为一旦使用了第一个数,后面和他相等的数就不能在这次排序中出现了,这样之后会导致在排序的这个位置只能使用最后一个同样数值的数才能保证得到整个序列(保证与之等值的used[i-1]永远为false),这样就相当于暗中规定了相等数字的相对排序,只能倒着选取(和sort之后nums序列的这一区段的顺序相反),这样也能保证同一位置一定不会使用相等的值,但这样无疑会导致进行更多次数的递归(尽管之前的数字必然得不到完整的序列,但还是会进行到底才能返回),所以虽然可以AC,但最好用上面的代码.(这也是文章里面提到的树枝去重法,显然数层比树枝去重效率高)

总结

去重的方法有两个:

  1. 如果必须保证nums序列的各个元素的相对顺序的话,没法自行让相等的值挨着,就要使用辅助数组法,也就是使用每个元素的值作为下标,来迅速查询这个值是否在当前for循环中被重复使用了.
  2. 如果不必保证nums原本的顺序,那就直接sort排序nums,这样就能让相等的值必然相邻,保证当前遍历到的值不和上一个值相等即可,这样去重效率超高.

这篇关于代码随想录算法训练营day 29|第七章 回溯算法part05的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/695323

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计