Python 数据可视化之山脊线图 Ridgeline Plots

2024-02-09 18:28

本文主要是介绍Python 数据可视化之山脊线图 Ridgeline Plots,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、前言
  • 二、主要内容
  • 三、总结

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


一、前言

JoyPy 是一个基于 matplotlib + pandas 的单功能 Python 包,它的唯一目的是绘制山脊线图 Joyplots(也称为 Ridgeline Plots)。

Why are they called joyplots?

Joyplots 是堆叠的、部分重叠的密度图,就是这么简单。它们是一种很好的绘制数据的方式,可以用来直观比较分布,特别是哪些随着一个维度(比如时间)变化的分布。虽然这并不是一种新技术。

在这里插入图片描述

Github 地址:https://github.com/leotac/joypy

安装 joypy,使用 pip install joypy==0.2.6 就好。

在行为差异、特征工程和预测建模等场景中,了解不同组之间的变量分布差异非常有用。在这些情况下,许多数据科学家更喜欢在单一坐标轴上绘制组级分布图,例如直方图或密度图。然而,当群体较多时,简单的组级分布图可能变得混乱且难以理解。

本文将向您介绍一种紧凑而优雅的数据可视化工具:山脊线图。它以清晰的方式展示不同变量或变量类别的分布差异,帮助我们更好地理解数据中的群体特征,从而获得更深入的洞察和启发。


二、主要内容

使用鸢尾花数据集 iris.csv 做实验,这个数据集如下所示:

在这里插入图片描述

打印特征名称和标签,以及输出标签的 value_counts。

print(f"特征:{list(df.columns)[:-1]}")
print(f"标签:{list(df.columns)[-1]}")特征:['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth']
标签:Namedf["Name"].value_counts()Iris-setosa        50
Iris-versicolor    50
Iris-virginica     50
Name: Name, dtype: int64
selected_cols = ['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth']fig, ax = plt.subplots(figsize=(10, 6), dpi=200)
my_title = 'Distribution of features in the iris dataset'fig, axes = joyplot(data=df,ax=ax,by='Name',column=selected_cols,xlabelsize=14,ylabelsize=14,grid=True,hist=False,color=['#FF0066', '#9400D3','#002FA7', '#FFB900'],legend=True,title=my_title,alpha=0.86,
)fig.savefig("./Figures/山脊图.png", dpi=300)plt.show()

关键参数说明

  • data:数据帧(DataFrame)、系列(Series)或嵌套集合(Nested collection)。常用 pandas 的 DataFrame
  • ax : matplotlib axes 对象,默认为 None。
  • column:字符串或序列。如果传入参数,将用于将数据限制为列的子集。
  • by:对象,可选项。用于划分不同组的变量分布的特征名称。本次实验中是 “Name”。
  • grid:布尔值,默认是 True。是否显示轴网格线。
  • title:绘制的图表的标题。
  • alpha:设置透明度。
  • xlabels、ylabels:布尔值或列表,默认为 True。
  • xlabelsize:整数,默认值 None。如果指定,则更改 X 轴标签尺寸。
  • xrot:浮点数,默认为 None。旋转 X 轴标签的角度。
  • ylabelsize:整数,默认值 None。如果指定,则更改 Y 轴标签尺寸。
  • yrot:浮点数,默认为 None。旋转 Y 轴标签的角度。
  • figsize : 元组。默认情况下,要创建的图形大小(以 inches 为单位)。
  • color:在绘图中使用的一种或多种颜色。可以是字符串或任何可被 matplotib 解释为颜色的东西。通常传入颜色列表。
  • kwds : 其他绘图关键字参数,将传递给 hist / {/} /kde plot 函数。

实际上,这主要涉及一些 matplotlib 绘图参数。用户还可以直接修改源代码,以调整 X 轴、Y 轴、标题和图例的字体大小,从而使生成的山脊线图更加美观。

山脊线图可视化的效果如下图所示

在这里插入图片描述

正如上图所示,山脊线图不仅展示了每个鸢尾花种类四个特征的分布形状和峰值,还直观地展示了不同种类之间的差异。通过将多个组的分布放置在同一张山脊线图上,并使用不同的颜色或线型进行标识,我们可以轻松比较它们之间的相似性和差异性。


三、总结

山脊线图(Ridgeline Plots),也被称为 Joy Plots,是一种用于展示一个或多个组的数据分布的数据可视化方法。

什么是山脊线图?

  • 山脊线图中,每个组的数据分布通过平滑的密度曲线表示,这些曲线沿垂直轴堆叠排列,从而产生类似山脊的视觉效果。
  • 这种图表特别适用于比较不同组的数据分布情况。

为什么要使用山脊线图?

  • 平滑展示数据分布:与传统的条形图或直方图相比,山脊线图提供了一种更平滑、更直观的方式来展示数据的分布情况。
  • 比较能力:山脊线图非常适合比较多个分布的形状和大小,清晰地展示不同组之间的变化和趋势。
  • 空间效率:通过在单个图中堆叠,山脊线图可以有效地利用空间,避免了创建多个单独的密度图。
  • 美观性:山脊线图在视觉上吸引人,用不同的颜色和样式区分不同的组,使得数据更加生动和直观。
  • 趋势识别:可以轻松识别多个群体数据中的共同模式和异常值。
  • 适用于大量数据集:山脊线图适用于展示大量数据集,而不会显得拥挤或不清晰。

如何制作山脊线图?

  • 山脊线图的制作基于核密度估计(Kernel Density Estimation,KDE),这是一种非参数估计概率密度函数的方法。
  • 使用 JoyPy,一个基于 matplotlib + pandas 的轻量级 Python 包,可以轻松绘制山脊线图 Joy Plot。

📚️ 参考链接:

  • 山脊线图(Ridgeline Plots):一个被低估的数据可视化瑰宝
  • HF.050 | 山脊图、密度图,最全总结实现方法在这里!
  • 沈向洋:致 AI 时代的我们 —— 请不要忽视写作的魅力

这篇关于Python 数据可视化之山脊线图 Ridgeline Plots的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/694974

相关文章

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

Python将字库文件打包成可执行文件的常见方法

《Python将字库文件打包成可执行文件的常见方法》在Python打包时,如果你想将字库文件一起打包成一个可执行文件,有几种常见的方法,具体取决于你使用的打包工具,下面就跟随小编一起了解下具体的实现方... 目录使用 PyInstaller基本方法 - 使用 --add-data 参数使用 spec 文件(

Python MCPInspector调试思路详解

《PythonMCPInspector调试思路详解》:本文主要介绍PythonMCPInspector调试思路详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录python-MCPInspector调试1-核心知识点2-思路整理1-核心思路2-核心代码3-参考网址

将图片导入Python的turtle库的详细过程

《将图片导入Python的turtle库的详细过程》在Python编程的世界里,turtle库以其简单易用、图形化交互的特点,深受初学者喜爱,随着项目的复杂度增加,仅仅依靠线条和颜色来绘制图形可能已经... 目录开篇引言正文剖析1. 理解基础:Turtle库的工作原理2. 图片格式与支持3. 实现步骤详解第

Python的pip在命令行无法使用问题的解决方法

《Python的pip在命令行无法使用问题的解决方法》PIP是通用的Python包管理工具,提供了对Python包的查找、下载、安装、卸载、更新等功能,安装诸如Pygame、Pymysql等Pyt... 目录前言一. pip是什么?二. 为什么无法使用?1. 当我们在命令行输入指令并回车时,一般主要是出现以