Stable Diffusion教程——使用TensorRT GPU加速提升Stable Diffusion出图速度

本文主要是介绍Stable Diffusion教程——使用TensorRT GPU加速提升Stable Diffusion出图速度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

Diffusion 模型在生成图像时最大的瓶颈是速度过慢的问题。为了解决这个问题,Stable Diffusion 采用了多种方式来加速图像生成,使得实时图像生成成为可能。最核心的加速是Stable Diffusion 使用了编码器将图像从原始的 3512512 大小转换为更小的 46464 大小,从而极大地降低了计算量。它还利用了潜在表示空间(latent space)上的 Diffusion 过程,进一步降低了计算复杂度,同时也能保证较好的图像生成效果。在 消费级GPU 上(8G显存),Stable Diffusion 要生成一张描述复杂图像大概需要 4 秒时间。

然而,对于许多面向消费者的应用来说,每张图像生成需要 4 秒的耗时仍然过长。这时候,TensorRT 就发挥了重要作用。TensorRT 是英伟达(NVIDIA)推出的高性能深度学习推理(inference)库,旨在优化和加速深度学习模型的推理过程。它能够将训练好的深度学习模型优化并部署到 NVIDIA GPU 上,实现实时推理任务的高效执行。TensorRT 的设计目标是提高推理性能、减少延迟和资源消耗,并支持在边缘设备上运行。

TensorRT 提供了许多优化技术,包括网络层融合(layer fusion)、内存优化、精度降级(precision calibration)、量化(quantization)和深度学习模型的裁剪(network pruning)。通过这些技术,TensorRT 可以最大限度地利用 GPU 的并行计算能力,实现深度学习模型的高效执行。

2023年10月18日 Nvidia终于推出了官方的TensorRT插件Stable-Diffusion-WebUI-TensorRT,该插件可以直接在 webui 的 extension 中安装即可,默认支持cuda11.x。

环境配置要求

要使用Stable-Diffusion-WebUI-TensorRT插件加速,有几个重要的前提条件,GPU必须是NVIDIA的(俗称N卡),GPU的显存必须在8G以上,包含8G,GPU驱动版本大于等于537.58,如果电脑没有别的深度学习模型要训练,建议驱动更新到最新的版本。物理内存大于等于16G。
支持Stable-Diffusion1.5,2.1,SDXL,SDXL Turbo 和 LCM。对于 SDXL 和 SDXL Turbo,官方推荐使用具有12GB 或更多 VRAM 的 GPU,以获得最佳性能。

在这里插入图片描述
查看GPU驱动版本:
在这里插入图片描述
查看内存与显卡型号:
在这里插入图片描述

我使用的环境是win10,GPU 3080 10G显存,32G内存,Stable Diffusion用的是秋叶大佬的4.5这个版本。

Stable-Diffusion-WebUI-TensorRT安装

1.安装

启动Stable-Diffusion-WebUI,找到扩展,然后从网址安装TensorRT插件:
插件网址:https://github.com/NVIDIA/Stable-Diffusion-WebUI-TensorRT.git在这里插入图片描述
点击安装:
在这里插入图片描述
等侍2到10分钟,安装完成:
在这里插入图片描述

然后重启Stable-Diffusion-WebUI,就可以看到:
在这里插入图片描述
在这里插入图片描述

2.设置

打开设置——>用户界面——>快捷设置列表——>输入"sd_unet",然后保存设置,重载UI:
在这里插入图片描述
重启之后就可以看到多了一个SD Unet的选框了:
在这里插入图片描述

3.模型转换

选择要使用的模型,然后打开TensorRT——>TensorRT导出——>选择预设尺寸——>导出引擎:
在这里插入图片描述
关于导出尺寸,这是要设置不用尺寸,但尺寸大小只能是2的幕,这里面导出的模型为onnx模型,如果接触过深度学习的都清楚这个尺寸的含义。

4. 测试推理速度

使用TensorRT推理时,选择的模型与SD Unet要对应,出图的宽度与高度,也要对应上一步导出的模型的尺寸:
在这里插入图片描述

测试出图速度,使用TensorRT出图时,第一张图会很慢,要计算时间可以从第二张开始算,下面出图尺寸是1024*1024:

使用TensorRT推理:
在这里插入图片描述
不使用TensorRT推理,可以看出慢了2点几秒,差不多3秒:
在这里插入图片描述

使用TensorRT推理(出图尺寸512*512):
在这里插入图片描述

不使用TensorRT推理(出图尺寸512*512),可以看出,不使用TensorRT差不多要慢上一倍左右:
在这里插入图片描述

这篇关于Stable Diffusion教程——使用TensorRT GPU加速提升Stable Diffusion出图速度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/694081

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他