ShuffleNet v1算法详解

2024-02-09 06:38
文章标签 算法 详解 shufflenet v1

本文主要是介绍ShuffleNet v1算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址:https://arxiv.org/pdf/1707.01083.pdf
Face++的一篇关于降低深度网络计算量的论文

什么是group convlution 群卷积 ?

我们假设上一层的输出feature map有N个,即通道数channel=N,也就是说上一层有N个卷积核。再假设群卷积的群数目M。那么该群卷积层的操作就是,先将channel分成M份。每一个group对应N/M个channel,与之独立连接。然后各个group卷积完成后将输出叠在一起(concatenate),作为这一层的输出channel。

该文章主要采用channel shuffle、pointwise group convolutions和depthwise separable convolution来修改原来的ResNet的bottleneck单元

Channel shuffle

     

  1. 图a做group convolution的方法:对于N个feature map M个filter(卷积核),group组数为g,则N,M都被分为g个组,第一个group中M/g个fliter的每一个filter都和第一个group中N/g个feature map做卷积得到结果,接着第二个,第三个….                   总结:feature map和卷积核都为相同的分组,然后对应组相卷积得到结果,这样做的目的就是可以大幅减少计算量如果有多   个卷积层都有group操作如图(a),这样就会产生边界效应:某个输出channel仅仅来自输入channel的一小部分,只能学习到一小部分的特征,于是提出了channel shuffle;简言之就是:如图a,最终的output输出只和输入的一小部分有关
  2. Channel shuffle图b,在进行Gconv之前,对其输入的feature map做了一个分配:将每个group分成几个subgroup,然后将group的每个subgroup作为GConv2的一个group的输入下一个Gconv的输入,如图c所示。

Pointwise group convolution (卷积核是1*1的卷积)

在ResNet中主要对3*3的卷积做group操作,但是在shuffleNet中,作者对1*1卷积做grounp的操作

文中计算了这三个unit的FLOPS:(我把计算式子写开,更容易理解)

其中c为输入通道数,m为输出通道数,g为group分组数

a为(2cm + 9m*m) = (c+3*3*m+c)*m

b为(2cm + 9m*m/g)= (c/g+3*3*m/g+c/g)*m

  1. 图a是ResNet中的bottleneck unit,不过将原来的3*3 Conv改成3*3 DW Conv
  2. 图b 是添加了group convolution 和channel shuffle
  3. bottleneck中添加average pooling,设置DWConv的步长为2,最后采用contact操作按channel合并代替ADD操作

实验结果

Table1是网络结构,设置不同的分组数的复杂度,Table2计算了不同ShuffleNet复杂度下的错误率。1X, 0.5X, 0,25X表示将网络的filter缩小s*s倍

Table2标题括号中的好像是有错误,应该为更小的s表现更大的分类错误率

此外作者还做了如下的比较,寻找最优的分组数g

不同模型的复杂度和错误率的比较

最后作者得出一个经验值,使用groung=3时可以得到一个准确率和运行时间的一个平衡。

这篇关于ShuffleNet v1算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/693410

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原