应用ANN+SMOTE+Keras Tuner算法进行信用卡交易欺诈侦测

2024-02-08 19:52

本文主要是介绍应用ANN+SMOTE+Keras Tuner算法进行信用卡交易欺诈侦测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 目录

SMOTE:

 ANN:ANN(MLP) 三种预测-CSDN博客

Keras Tuner:CNN应用Keras Tuner寻找最佳Hidden Layers层数和神经元数量-CSDN博客

数据: 

建模:

 SMOTE Sampling:

Keras Tuner: 

SMOTE:

SMOTE(Synthetic Minority Over-sampling Technique)是一种用于处理不均衡数据集的采样方法。在不均衡数据集中,某个类别的样本数量往往很少,这导致了模型对少数类别的预测效果较差。SMOTE采样通过合成新的少数类样本来增加其数量,从而提高模型对少数类样本的学习能力。

SMOTE采样的基本思想是对于每个少数类样本,从其最近的k个最近邻样本中随机选择一个样本,然后在该样本与原始样本之间生成一个合成样本。这样一来,就能增加少数类样本的数量,使得不同类别之间的样本分布更加平衡。

SMOTE采样可以应用于各种机器学习算法中,包括决策树、逻辑回归、支持向量机等。它能够有效地解决不均衡数据集带来的问题,提高模型的预测能力和准确性。

 ANN:ANN(MLP) 三种预测-CSDN博客

Keras Tuner:CNN应用Keras Tuner寻找最佳Hidden Layers层数和神经元数量-CSDN博客

数据: 

import numpy as np 
import pandas as pd 
import keras
import matplotlib.pyplot as plt
import seaborn as snsdata = pd.read_csv('creditcard.csv',sep=',')from sklearn.preprocessing import StandardScaler #数据标准化
data['Amount(Normalized)'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1,1))
data.iloc[:,[29,31]]data = data.drop(columns = ['Amount', 'Time'], axis=1) # This columns are not necessary anymore.X = data.drop('Class', axis=1)
y = data['Class']from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# We are transforming data to numpy array to implementing with keras
X_train = np.array(X_train)
X_test = np.array(X_test)
y_train = np.array(y_train)
y_test = np.array(y_test)

 

建模:

from tensorflow import keras
from tensorflow.keras import layers
from kerastuner.tuners import RandomSearchfrom keras.models import Sequential
from keras.layers import Dense, Dropout
model = Sequential([Dense(units=20, input_dim = X_train.shape[1], activation='relu'),Dense(units=24,activation='relu'),Dropout(0.5),Dense(units=20,activation='relu'),Dense(units=24,activation='relu'),Dense(1, activation='sigmoid')
])
model.summary()model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, batch_size=30, epochs=5)score = model.evaluate(X_test, y_test)
print('Test Accuracy: {:.2f}%\nTest Loss: {}'.format(score[1]*100,score[0]))
'''结果:
671/2671 [==============================] - 6s 2ms/step - loss: 0.0029 - accuracy: 0.9994
Test Accuracy: 99.94%
Test Loss: 0.0028619361110031605
'''

from sklearn.metrics import confusion_matrix, classification_report
y_pred = model.predict(X_test)
y_test = pd.DataFrame(y_test)
cm = confusion_matrix(y_test, y_pred.round())
sns.heatmap(cm, annot=True, fmt='.0f', cmap='cividis_r')
plt.show()#实际上我们要预测为1的数据, 虽然模型准确率很高 但是对于1的预测并没有非常准确

 

 SMOTE Sampling:

from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42)
X_smote, y_smote = sm.fit_resample(X, y)
X_smote = pd.DataFrame(X_smote)
y_smote = pd.DataFrame(y_smote)
y_smote.iloc[:,0].value_counts()X_train, X_test, y_train, y_test = train_test_split(X_smote, y_smote, test_size=0.3, random_state=0)
X_train = np.array(X_train)
X_test = np.array(X_test)
y_train = np.array(y_train)
y_test = np.array(y_test)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, batch_size = 30, epochs = 5)score = model.evaluate(X_test, y_test)
print('Test Accuracy: {:.2f}%\nTest Loss: {}'.format(score[1]*100,score[0]))
'''结果:
5331/5331 [==============================] - 13s 2ms/step - loss: 0.0046 - accuracy: 0.9991
Test Accuracy: 99.91%
Test Loss: 0.004645294509828091
'''
y_pred = model.predict(X_test)
y_test = pd.DataFrame(y_test)
cm = confusion_matrix(y_test, y_pred.round())
sns.heatmap(cm, annot=True, fmt='.0f')
plt.show()#经过SMOTE Sampling后 对于1的失误预测从刚刚的25降为11

Keras Tuner: 

def build_model(hp):model = keras.Sequential()for i in range(hp.Int('num_layers', 2, 20)):model.add(layers.Dense(units=hp.Int('units_' + str(i),min_value=32,max_value=512,step=32),activation='relu'))model.add(layers.Dense(10, activation='softmax'))model.compile(optimizer=keras.optimizers.Adam(hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),loss='sparse_categorical_crossentropy',metrics=['accuracy'])return modeltuner = RandomSearch(build_model,objective='val_accuracy',max_trials=10,directory='my_dir',project_name='helloworld')tuner.search(X_train, y_train,epochs=5,validation_data=(X_test, y_test))

这篇关于应用ANN+SMOTE+Keras Tuner算法进行信用卡交易欺诈侦测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692050

相关文章

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi