应用ANN+SMOTE+Keras Tuner算法进行信用卡交易欺诈侦测

2024-02-08 19:52

本文主要是介绍应用ANN+SMOTE+Keras Tuner算法进行信用卡交易欺诈侦测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 目录

SMOTE:

 ANN:ANN(MLP) 三种预测-CSDN博客

Keras Tuner:CNN应用Keras Tuner寻找最佳Hidden Layers层数和神经元数量-CSDN博客

数据: 

建模:

 SMOTE Sampling:

Keras Tuner: 

SMOTE:

SMOTE(Synthetic Minority Over-sampling Technique)是一种用于处理不均衡数据集的采样方法。在不均衡数据集中,某个类别的样本数量往往很少,这导致了模型对少数类别的预测效果较差。SMOTE采样通过合成新的少数类样本来增加其数量,从而提高模型对少数类样本的学习能力。

SMOTE采样的基本思想是对于每个少数类样本,从其最近的k个最近邻样本中随机选择一个样本,然后在该样本与原始样本之间生成一个合成样本。这样一来,就能增加少数类样本的数量,使得不同类别之间的样本分布更加平衡。

SMOTE采样可以应用于各种机器学习算法中,包括决策树、逻辑回归、支持向量机等。它能够有效地解决不均衡数据集带来的问题,提高模型的预测能力和准确性。

 ANN:ANN(MLP) 三种预测-CSDN博客

Keras Tuner:CNN应用Keras Tuner寻找最佳Hidden Layers层数和神经元数量-CSDN博客

数据: 

import numpy as np 
import pandas as pd 
import keras
import matplotlib.pyplot as plt
import seaborn as snsdata = pd.read_csv('creditcard.csv',sep=',')from sklearn.preprocessing import StandardScaler #数据标准化
data['Amount(Normalized)'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1,1))
data.iloc[:,[29,31]]data = data.drop(columns = ['Amount', 'Time'], axis=1) # This columns are not necessary anymore.X = data.drop('Class', axis=1)
y = data['Class']from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# We are transforming data to numpy array to implementing with keras
X_train = np.array(X_train)
X_test = np.array(X_test)
y_train = np.array(y_train)
y_test = np.array(y_test)

 

建模:

from tensorflow import keras
from tensorflow.keras import layers
from kerastuner.tuners import RandomSearchfrom keras.models import Sequential
from keras.layers import Dense, Dropout
model = Sequential([Dense(units=20, input_dim = X_train.shape[1], activation='relu'),Dense(units=24,activation='relu'),Dropout(0.5),Dense(units=20,activation='relu'),Dense(units=24,activation='relu'),Dense(1, activation='sigmoid')
])
model.summary()model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, batch_size=30, epochs=5)score = model.evaluate(X_test, y_test)
print('Test Accuracy: {:.2f}%\nTest Loss: {}'.format(score[1]*100,score[0]))
'''结果:
671/2671 [==============================] - 6s 2ms/step - loss: 0.0029 - accuracy: 0.9994
Test Accuracy: 99.94%
Test Loss: 0.0028619361110031605
'''

from sklearn.metrics import confusion_matrix, classification_report
y_pred = model.predict(X_test)
y_test = pd.DataFrame(y_test)
cm = confusion_matrix(y_test, y_pred.round())
sns.heatmap(cm, annot=True, fmt='.0f', cmap='cividis_r')
plt.show()#实际上我们要预测为1的数据, 虽然模型准确率很高 但是对于1的预测并没有非常准确

 

 SMOTE Sampling:

from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42)
X_smote, y_smote = sm.fit_resample(X, y)
X_smote = pd.DataFrame(X_smote)
y_smote = pd.DataFrame(y_smote)
y_smote.iloc[:,0].value_counts()X_train, X_test, y_train, y_test = train_test_split(X_smote, y_smote, test_size=0.3, random_state=0)
X_train = np.array(X_train)
X_test = np.array(X_test)
y_train = np.array(y_train)
y_test = np.array(y_test)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, batch_size = 30, epochs = 5)score = model.evaluate(X_test, y_test)
print('Test Accuracy: {:.2f}%\nTest Loss: {}'.format(score[1]*100,score[0]))
'''结果:
5331/5331 [==============================] - 13s 2ms/step - loss: 0.0046 - accuracy: 0.9991
Test Accuracy: 99.91%
Test Loss: 0.004645294509828091
'''
y_pred = model.predict(X_test)
y_test = pd.DataFrame(y_test)
cm = confusion_matrix(y_test, y_pred.round())
sns.heatmap(cm, annot=True, fmt='.0f')
plt.show()#经过SMOTE Sampling后 对于1的失误预测从刚刚的25降为11

Keras Tuner: 

def build_model(hp):model = keras.Sequential()for i in range(hp.Int('num_layers', 2, 20)):model.add(layers.Dense(units=hp.Int('units_' + str(i),min_value=32,max_value=512,step=32),activation='relu'))model.add(layers.Dense(10, activation='softmax'))model.compile(optimizer=keras.optimizers.Adam(hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),loss='sparse_categorical_crossentropy',metrics=['accuracy'])return modeltuner = RandomSearch(build_model,objective='val_accuracy',max_trials=10,directory='my_dir',project_name='helloworld')tuner.search(X_train, y_train,epochs=5,validation_data=(X_test, y_test))

这篇关于应用ANN+SMOTE+Keras Tuner算法进行信用卡交易欺诈侦测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692050

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令