强化学习 | 基于 Q-Learning 算法解决 Treasure on Right 游戏

2024-02-08 13:52

本文主要是介绍强化学习 | 基于 Q-Learning 算法解决 Treasure on Right 游戏,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hi,大家好,我是半亩花海。在本篇技术博客中,我们将探讨如何使用 Q-Learning 算法来解决 Treasure on Right 游戏,实现一个简单的强化学习


一、游戏背景

Treasure on Right 游戏——一个简单的命令行寻宝游戏,是一个经典的强化学习示例,它模拟了一个智能体在有限状态空间中寻找宝藏的过程。游戏环境由一个线性状态空间组成,智能体可以执行两个动作:向左移动或向右移动。目标是让智能体学会在状态空间中移动,找到宝藏,它位于状态空间的最右侧。


二、Q-Learning 算法简介

Q-Learning 是一种基于值函数的强化学习算法,用于解决智能体与环境交互的问题。它通过迭代更新状态-动作对的 Q 值来优化策略。Q 值表示在特定状态下采取特定动作的长期回报,智能体通过学习最优的 Q 值来选择最佳动作。


三、代码拆解

1. 导入必要的库

首先导入 pandas、numpy 和 time 库,以便进行数据处理、数组操作和控制程序运行时间。

import pandas as pd
import numpy as np
import time

2. 定义常量和参数

在这个部分,我们定义了游戏中所需的常量和参数,包括状态数量、动作集合、epsilon 贪婪度、学习率、奖励衰减因子等。

N_STATES = 6                 # 状态数量
ACTIONS = ["left", "right"]  # 动作集合
EPSILON = 0.9                # epsilon-greedy算法中的贪婪度
ALPHA = 0.1                  # 学习率
GAMMA = 0.9                  # 奖励衰减因子
MAX_EPISODES = 15            # 最大训练轮数
FRESH_TIME = 0.3             # 每一步的时间间隔
TerminalFlag = "terminal"    # 终止状态标识

3. 创建Q表

我们定义了一个函数来创建 Q 表格,用于存储状态-动作对的 Q 值。初始时,所有的 Q 值都被初始化为 0。

def build_q_table(n_states, actions):return pd.DataFrame(  np.zeros((n_states, len(actions))),  columns=actions  )

4. 选择动作

这个函数根据当前状态和 Q 表格选择动作。我们使用 ε-greedy 策略,以一定的概率随机选择动作,以便在探索和利用之间取得平衡。

def choose_action(state, q_table):state_table = q_table.loc[state, :]if (np.random.uniform() > EPSILON) or ((state_table == 0).all()):action_name = np.random.choice(ACTIONS)else:action_name = state_table.idxmax()return action_name

5. 获取环境反馈

这个函数模拟了智能体与环境的交互过程,根据智能体采取的动作返回下一个状态和相应的奖励。

def get_env_feedback(S, A):if A == "right":if S == N_STATES - 2:S_, R = TerminalFlag, 1else:S_, R = S + 1, 0else:S_, R = max(0, S - 1), 0return S_, R

6. 更新环境

这个函数用于更新环境的显示,以便智能体能够观察到当前状态。

def update_env(S, episode, step_counter):env_list = ["-"] * (N_STATES - 1) + ["T"]  if S == TerminalFlag:  interaction = 'Episode %s: total_steps = %s' % (episode + 1, step_counter)  print(interaction)  time.sleep(2)  else:  env_list[S] = '0'  interaction = ''.join(env_list)  print(interaction)  time.sleep(FRESH_TIME)  

7. Q-learning主循环

这个函数包含了整个Q-learning的主要逻辑,包括选择动作、获取环境反馈和更新Q值等步骤。

def rl():q_table = build_q_table(N_STATES, ACTIONS)for episode in range(MAX_EPISODES): step_counter = 0S = 0is_terminated = Falseupdate_env(S, episode, step_counter)  while not is_terminated:  A = choose_action(S, q_table)  S_, R = get_env_feedback(S, A)  q_predict = q_table.loc[S, A]  if S_ != TerminalFlag:  q_target = R + GAMMA * q_table.loc[S_, :].max()  else:  q_target = R  is_terminated = True  q_table.loc[S, A] += ALPHA * (q_target - q_predict)  S = S_  update_env(S, episode, step_counter + 1)  step_counter += 1  return q_table

8. 主程序入口

在这部分代码中,我们运行整个程序,执行Q-learning算法并输出最终的Q表格。

if __name__ == '__main__':q_table = rl()  print(q_table)  

四、项目意义和应用价值

Treasure on Right 游戏作为一个简单的强化学习示例,展示了 Q-Learning 算法在解决智能体与环境交互问题中的应用。通过实现这个项目,我们可以深入理解强化学习算法的工作原理,并了解如何利用这种算法解决实际问题。Q-Learning 算法及其变体在许多领域都有广泛的应用,如机器人控制、自动驾驶、游戏设计等。通过掌握这种算法,我们可以为各种应用场景开发智能决策系统,从而提高效率、优化资源利用,甚至解决复杂的实时决策问题。

在学术界和工业界,Q-Learning 算法已经被广泛应用,并且不断被改进和扩展,以解决更加复杂的问题。因此,掌握 Q-Learning 算法对于从事人工智能和机器学习领域的工程师和研究人员来说是非常重要的。


五、完整代码

# 使用Q-Learning算法来实现treasure on right游戏(宝藏在最右边的位置:训练一个智能体去获得这个宝藏)
import pandas as pd
import numpy as np
import timeN_STATES = 6                 # 状态数量
ACTIONS = ["left", "right"]  # 动作集合
EPSILON = 0.9                # epsilon-greedy算法中的贪婪度
ALPHA = 0.1                  # 学习率
GAMMA = 0.9                  # 奖励衰减因子
MAX_EPISODES = 15            # 最大训练轮数
FRESH_TIME = 0.3             # 每一步的时间间隔
TerminalFlag = "terminal"    # 终止状态标识# 创建Q表
def build_q_table(n_states, actions):return pd.DataFrame(  # 创建一个DataFrame对象np.zeros((n_states, len(actions))),  # 用0初始化一个n_states行,len(actions)列的数组columns=actions  # 设置DataFrame的列名为动作列表)# 根据当前状态选择动作
def choose_action(state, q_table):state_table = q_table.loc[state, :]  # 获取Q表中对应状态行的值if (np.random.uniform() > EPSILON) or ((state_table == 0).all()):  # 判断是否随机选择动作action_name = np.random.choice(ACTIONS)  # 如果满足条件,随机选择一个动作else:action_name = state_table.idxmax()  # 否则选择具有最大值的动作return action_name  # 返回选择的动作# 获取环境的反馈,包括下一个状态和奖励
def get_env_feedback(S, A):if A == "right":  # 如果动作是向右移动if S == N_STATES - 2:  # 如果当前状态是倒数第二个状态S_, R = TerminalFlag, 1  # 下一个状态是终止状态,奖励为1else:  # 否则S_, R = S + 1, 0  # 下一个状态向右移动一步,奖励为0else:  # 如果动作不是向右移动S_, R = max(0, S - 1), 0  # 下一个状态向左移动一步,奖励为0return S_, R  # 返回下一个状态和奖励# 更新环境
def update_env(S, episode, step_counter):env_list = ["-"] * (N_STATES - 1) + ["T"]  # 创建一个环境列表,长度为N_STATES-1,最后一个元素为终止标志"T"if S == TerminalFlag:  # 如果当前状态为终止状态interaction = 'Episode %s: total_steps = %s' % (episode + 1, step_counter)  # 打印本次训练的步数print(interaction)  # 打印信息time.sleep(2)  # 等待2秒else:  # 如果当前状态不是终止状态env_list[S] = '0'  # 在环境列表中将当前状态位置标记为'0'interaction = ''.join(env_list)  # 将环境列表转换为字符串print(interaction)  # 打印环境状态time.sleep(FRESH_TIME)  # 等待一段时间# Q-learning主循环
def rl():# 创建Q表: 存储的表记录的是, 在状态S下, 每个行为A的Q值q_table = build_q_table(N_STATES, ACTIONS)for episode in range(MAX_EPISODES):       # 对于每一轮训练(episode)step_counter = 0                      # 记录每个episode的步数S = 0                                 # 初始状态is_terminated = False                 # 用于判断是否到达终止状态update_env(S, episode, step_counter)  # 更新环境显示# 在未到达终止状态的情况下进行循环while not is_terminated:            # 如果未到达终止状态A = choose_action(S, q_table)   # 选择动作S_, R = get_env_feedback(S, A)  # 获取环境反馈(下一个状态和奖励)q_predict = q_table.loc[S, A]   # 获取Q值的预测值# 根据下一个状态是否为终止状态更新Q值的目标值if S_ != TerminalFlag:                               # 如果下一个状态不是终止状态q_target = R + GAMMA * q_table.loc[S_, :].max()  # 使用贝尔曼方程计算目标Q值else:                                                # 如果下一个状态是终止状态q_target = R                                     # 目标Q值为即时奖励is_terminated = True                             # 到达终止状态q_table.loc[S, A] += ALPHA * (q_target - q_predict)  # 使用Q-learning更新Q表S = S_                                               # 更新当前状态update_env(S, episode, step_counter + 1)             # 更新环境显示step_counter += 1                                    # 步数加1return q_tableif __name__ == '__main__':q_table = rl()  # 运行Q-learning算法print(q_table)  # 打印Q表

这篇关于强化学习 | 基于 Q-Learning 算法解决 Treasure on Right 游戏的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/691225

相关文章

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

在Ubuntu上打不开GitHub的完整解决方法

《在Ubuntu上打不开GitHub的完整解决方法》当你满心欢喜打开Ubuntu准备推送代码时,突然发现终端里的gitpush卡成狗,浏览器里的GitHub页面直接变成Whoathere!警告页面... 目录一、那些年我们遇到的"红色惊叹号"二、三大症状快速诊断症状1:浏览器直接无法访问症状2:终端操作异常

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe