深入理解Spark BlockManager:定义、原理与实践

2024-02-08 13:04

本文主要是介绍深入理解Spark BlockManager:定义、原理与实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深入理解Spark BlockManager:定义、原理与实践

1.定义

Spark是一个开源的大数据处理框架,其主要特点是高性能、易用性以及可扩展性。在Spark中,BlockManager是其核心组件之一,它负责管理内存和磁盘上的数据块,并确保这些数据块在集群中的各个节点上可以高效地共享和访问,其中包括存储、复制、序列化和反序列化数据块,并且负责将这些数据块分发到集群中的各个节点上,以便进行计算。BlockManager还处理数据块的缓存和回收,以及故障恢复和数据迁移等任务。

因为Spark是分布式的计算引擎,因此BlockManager也是一个分布式组件,各个节点(Executor)上都有一个BlockManger实例,管理着当前Executor的数据及元数据进行处理及维护,比如我们常说的block块的增删改的操作,都会在BlockManager上做相应的元素局的变更。而Executor上的BlockManager实例是由Driver端上的BlockManagerMaster统一管理,其关系类似于我们常说的NameNode和DataNode之间的关系。我们知道Spark本身有很多的模块,比如Scheduler调度模块,Standalone资源管理模块等,而BlockManager就是其中非常重要的模块,其源码量也是非常的巨大。总而言之,spark BlockManager是负责Spark上所有的数据的存储与管理的一个极其重要的组件。

2.原理分析

2.1 数据块的管理

在Spark中,每个数据块都有唯一的标识符,称为BlockId。BlockManager通过维护数据块的元数据来管理这些数据块,包括数据块的类型、大小、版本号、所在节点等信息。当一个节点需要访问一个数据块时,它会向BlockManager发送请求,BlockManager根据数据块的标识符和元数据来定位数据块所在的节点,并返回数据块的引用。

sealed abstract class BlockId {// 全局唯一的block的名字def name: String// convenience methodsdef asRDDId: Option[RDDBlockId] = if (isRDD) Some(asInstanceOf[RDDBlockId]) else None// 一下判断不同类型的Block,可能是RDD、Shuffle、Broadcast之一def isRDD: Boolean = isInstanceOf[RDDBlockId]def isShuffle: Boolean = {(isInstanceOf[ShuffleBlockId] || isInstanceOf[ShuffleBlockBatchId] ||isInstanceOf[ShuffleDataBlockId] || isInstanceOf[ShuffleIndexBlockId])}def isShuffleChunk: Boolean = isInstanceOf[ShuffleBlockChunkId]def isBroadcast: Boolean = isInstanceOf[BroadcastBlockId]override def toString: String = name
}

2.2 数据块的存储

我们知道,Spark中的数据块可以存在于内存或磁盘中,对于小数据块,BlockManager会优先将其存储在内存中,以提高访问速度;对于大数据块,则会将其存储在磁盘上。BlockManager还支持将数据块存储在外部存储系统中,如HDFS、S3等。

class StorageLevel private(// 磁盘
private var _useDisk: Boolean,
// 内存
private var _useMemory: Boolean,
// 堆外内存
private var _useOffHeap: Boolean,
// 是否序列化
private var _deserialized: Boolean,
// block默认副本
private var _replication: Int = 1)
extends Externalizable

2.3 数据块的复制

为了保证数据块的可靠性和高可用性,BlockManager会自动将一些数据块复制到其他节点上,以免数据丢失或节点故障导致数据无法访问。复制策略可以根据具体需求进行配置,例如可以设置副本数、复制间隔、复制位置等。

2.4 数据块的序列化和反序列化

在Spark中,数据块经常需要在不同的节点之间传输和共享,因此需要进行序列化和反序列化。BlockManager提供了常用的序列化和反序列化方式,包括Java序列化、Kryo序列化等。

图片

2.5 数据块的缓存和回收

为了提高计算效率,BlockManager还支持将一些常用的数据块缓存在内存中,以避免频繁地从磁盘或外部存储系统中读取数据块。同时,BlockManager还会定期清除一些不再使用的数据块,以释放资源。

2.6 故障恢复和数据迁移

当一个节点出现故障或者网络出现问题时,BlockManager会自动进行故障恢复,将丢失的数据块重新复制到其他节点上。此外,在集群扩容或缩容时,BlockManager还支持数据迁移,以保证数据块的平衡分布。 

2.7 运行原理图

图片

3.代码解读

Spark的BlockManager主要由以下两个类实现:

BlockManagerMaster:负责管理集群中所有节点的BlockManager,并协调各个节点之间的数据块复制和迁移等操作。

BlockManager:负责管理本地节点的数据块,包括数据块的存储、缓存、序列化和反序列化等操作。

接下来,我们重点分析BlockManager,BlockManager的代码主要位于Spark的存储模块中。以下是BlockManager的主要代码结构:

  • BlockManagerMaster:这是BlockManager的主节点,它负责管理所有的数据块。BlockManagerMaster会与每个工作节点上的BlockManager进行通信,了解每个数据块的位置和状态。

  • BlockManagerWorker:这是BlockManager的工作节点,它负责管理本地的数据块。BlockManagerWorker会与BlockManagerMaster进行通信,报告本地数据块的状态。

  • BlockInfo:这是表示一个数据块的信息,包括数据块的大小、位置、副本数等。

  • BlockManager:这是实际执行数据块管理操作的类,它提供了读取、写入、删除数据块的方法。

下面是BlockManager的关键代码解析:


class BlockManager(executorId: String,rpcEnv: RpcEnv,val master: BlockManagerMaster,val defaultSerializer: Serializer,val conf: SparkConf,memoryManager: MemoryManager,mapOutputTracker: MapOutputTracker,shuffleManager: ShuffleManager,blockTransferService: BlockTransferService,securityManager: SecurityManager,numUsableCores: Int)
extends BlockDataManager with Logging {// 存储所有的Blockprivate val blocks = new ConcurrentHashMap[BlockId, BlockInfo]// 存储所有正在读取中的Blockprivate val activeReads = new ConcurrentHashMap[BlockId, BlockFetchingState]// 存储所有正在写入中的Blockprivate val activeWrites = new ConcurrentHashMap[BlockId, BlockOutputStream]// 存储所有已经删除的Blockprivate val deadBlocks = new ConcurrentHashMap[BlockId, Long]// 存储所有已经接收到的Blockprivate val receivedBlockTracker = new ReceivedBlockTracker// 存储所有已经丢失的Blockprivate val blockReplicationPolicy = BlockManager.getReplicationPolicy(conf, master)private val blockTracker = new BlockTracker(blockReplicationPolicy)private val lostBlocks = new ConcurrentHashMap[BlockId, ArrayBuffer[BlockManagerId]]// 存储所有已经被缓存的Blockprivate val cachedBlocks = new ConcurrentHashMap[BlockId, CachedBlock]// BlockManager的内存管理器private val memoryStore =new MemoryStore(conf, memoryManager, this, blockInfoManager)// BlockManager的磁盘管理器private val diskStore = new DiskStore(conf, this, diskBlockManager)// BlockManager的块传输服务private val blockTransferService =new NettyBlockTransferService(conf, securityManager, numUsableCores)// BlockManager的块上传服务private val blockUploadHandler = new BlockUploadHandler(this)// BlockManager的块下载服务private val blockDownloader = new BlockDownloader(blockTransferService, this)// BlockManager的安全管理器private val blockTransferServiceServer =blockTransferService.initServer(rpcEnv, blockUploadHandler, blockDownloader)// BlockManager的Shuffle管理器private val shuffleBlockResolver = new ShuffleBlockResolver(conf)// BlockManager的Shuffle上传服务private val shuffleUploadHandler = new ShuffleUploadHandler(this, shuffleBlockResolver)// BlockManager的Shuffle下载服务private val shuffleDownloader = new ShuffleDownloader(blockTransferService, this)// BlockManager的Shuffle管理器private val shuffleServerId = SparkEnv.get.blockManager.blockManagerId.shuffleServerId// BlockManager的Shuffle服务private val shuffleService =new NettyShuffleService(shuffleServerId, conf, securityManager, shuffleUploadHandler,shuffleDownloader)// BlockManager的Metricsprivate val metricsSystem = SparkEnv.get.metricsSystemprivate val numBlocksRegistered = metricsSystem.counter("blocks.registered")private val numBlocksRemoved = metricsSystem.counter("blocks.removed")// 启动BlockManager的各个服务blockTransferService.init(clientMode = false)blockTransferServiceServer.start()shuffleService.start()// BlockManager的IDval blockManagerId = BlockManagerId(executorId, blockTransferService.hostName, rpcEnv.address.port)

代码中,BlockManager主要包括以下几个部分:

  • 存储结构:使用ConcurrentHashMap存储所有的Block、正在读取中的Block、正在写入中的Block、已经删除的Block、已经接收到的Block、已经缓存的Block以及已经丢失的Block等信息。

  • 内存管理器和磁盘管理器:内存管理器负责将小的数据块存储在内存中,而磁盘管理器则负责将大的数据块存储在磁盘上。

  • 块传输服务:负责处理节点之间的数据块传输,例如上传、下载和复制等操作。

  • Shuffle管理器:负责处理Spark的Shuffle操作,包括Shuffle数据的存储和传输等。

Metrics:用于收集BlockManager的各种指标,如已注册的Block数、已删除的Block数等。

4.案例分析

下面以WordCount为例,演示BlockManager在Spark中的使用过程:

val conf = new SparkConf().setAppName("WordCount").setMaster("local")
val sc = new SparkContext(conf)val lines = sc.textFile("data.txt")
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(word => (word, 1)).reduceByKey(_ + _)wordCounts.collect().foreach(println)

在这个例子中,首先调用textFile方法读取文本文件,并将其划分为多个Block。然后,使用flatMap和map方法对每个Block中的文本进行处理,最后使用reduceByKey方法将相同的单词进行合并。在这个过程中,BlockManager扮演着重要的角色,它负责管理所有的Block,并确保它们可以高效地共享和访问。

这篇关于深入理解Spark BlockManager:定义、原理与实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/691121

相关文章

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.