大数据对企业愈发重要,但数据驱动还是空谈

2024-02-08 11:40

本文主要是介绍大数据对企业愈发重要,但数据驱动还是空谈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                                             关注ITValue,查看企业级市场最新鲜、最具价值的报道!


 

连续六年来,New Vantage Partners每年都做了一项关于大型企业高管如何看待数据的调查。调查的反响愈加热烈,而结果也反映了管理层高效使用数据的要求越来越迫切。今年,调查结果喜忧参半,既有鼓舞人心的一面,也暴露了比过去都更让人忧心的地方。

 

六年前,调查里重点关注的问题和答案还是大数据,这当时在商界还是相对新颖的概念。在2018年的调查中,重点已经变成了人工智能。AI现在已经成了大型企业标配的发展重心,人们越来越认识到大数据和人工智能可以带来价值,同时也越来越感受到初创公司对知名企业的威胁。

 

参与调查的是来自57家大公司的高管人员。调查里,比例最高的行业是数据最为密集的金融服务业,此外还有生命科学、制造业、电信业和互联网产业的公司参与。自第一年以来,实际接受调查的人群也有所变化,这几年一直都有大量首席级别分管数据的高管,而这个比例在今年则一跃从去年的32%升到56%。在2012年的第一次调查时,只有12%的企业设立了首席数据官。

 

虽然现在AI在全世界各地都是新闻焦点,但调查本身其实着眼的是大数据和人工智能两方面。技术更新换代,不变的是数据爆炸和理解数据的需求。大数据和AI项目已经密不可分,尤其机器学习已经成为当前处理海量快速流通的数据的主流方法之一。

 

同理,用深度学习等基于统计学的方法来发展人工智能更是日益普及。因此,我们认为传统数据分析、大数据和人工智能是一个统一的整体,几乎所有受访者(97%)都表示所在的企业投资了这类项目。

 

调查结果揭示的最好的消息,就是各大企业依然认为能够从大数据和AI项目中获利。73%受访企业表示已经从相关项目中得到了重大价值,这个比例同样高于去年的调查结果,当时只是初步地指出,企业对数据技术日趋熟悉,也从中得到了更多价值。

 

所实现价值的类型或许跟以前的其他技术是一致的。我们认为大数据和AI是分析能力的延伸,许多公司的目标也跟我们的观点一致,即旨在达到“高级分析/更优决策”,而这些也是最可能实现的目标。

 

36%的受访公司把这个目标视为自身的当务之急,这其中的69%已经实现了目标。此外,企业间的共同目标还包括提升客户服务和开支削减。四分之一以上的企业(27%)在追求创新、颠覆、上市速度和数据变现的有机结合,而数据变现计划的优先级最低、成功率也最低(27%)。

 

调查还揭示了大公司最需要担心的一个问题,就是新公司带来的颠覆性风险。近八成受访者表示,曾经担心金融科技业的初创公司或专营大数据的公司会破坏甚至替代他们的市场地位。72%受访者认为,最具颠覆性、影响最深远的技术迄今为止还要数人工智能,这个比例远高于云计算(13%)或区块链(7%)。

 

另一个持续发酵的重要问题是,行业内现有企业转型成数据驱动文化的速度太慢了。

 

几乎所有受访者(99%)都指出,所在企业在努力转型,但目前只有三分之一取得了成功。每年的调查结果都能体现出这种理想与现实的差距,但是多年的时间并没有换来应有的进步。显然,企业需要更加上下一心,才能实现数据文化转型。许多初创公司从一开始就营造了数据驱动的文化,这也是为什么那些大的卓有成效的公司感到威胁、担心受到打击的关键原因。

 

企业用来应对数据驱动给市场带来的颠覆性变化的方法之一,就是设置新的管理职位。但是,不同的数据相关职位(首席信息官、首席数据官、首席数字官等)之间如何相互联系,目前依然缺乏清晰的定位。

 

就首席数据官(CDO)一职而言,这个角色的主要职责是什么,理想的人选该具有什么样的背景,目前都还存在巨大分歧。

 

39%受访者表示,他们的CDO主要负责数据策略和结果分析,但也有37%把这个工作交给其他高管,还有24%表示这份工作在问责上缺乏可行性。

 

在背景方面,34%受访者认为CDO应该从公司外部带动变革发生,32%则认为CDO应该是从公司内部筛选出来的老将。数据相关的高层职位需要明确职责,这对于领导AI和大数据项目、实现文化转型都是至关重要的。不过,虽然所有受访者都肯定了这一点,但是大部分公司依然缺少企业层面的数据战略。

 

大数据的重要性不断提升,挑战日益艰巨,这成了当代经济和社会的重要特征之一。多年的调查结果为这场革命提供了耐人寻味的可用材料,而人工智能的崛起只会加快这一趋势。成功的关键在于,明确企业的应对战略,为数据战略与结果分析进行明确分工,最后以系统、高效的方式推进所需变化的发生。





中国最大的技术高管实名社区,提供互联网时代最全面权威、也最前沿有趣的B2B市场信息解读。

点击【阅读原文】,进入ITValue社区,与CIO们一起脑力激荡!


我们只提供有价值的干货!

长按二维码
关注ITValue

这篇关于大数据对企业愈发重要,但数据驱动还是空谈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690918

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本