【大数据】Flink on YARN,如何确定 TaskManager 数

2024-02-08 10:44

本文主要是介绍【大数据】Flink on YARN,如何确定 TaskManager 数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink on YARN,如何确定 TaskManager 数

  • 1.问题
  • 2.并行度(Parallelism)
  • 3.任务槽(Task Slot)
  • 4.确定 TaskManager 数

在这里插入图片描述

1.问题

在 Flink 1.5 Release Notes 中,有这样一段话,直接上截图。

在这里插入图片描述
这说明从 1.5 版本开始,Flink on YARN 时的容器数量,即 TaskManager 数量,将由程序的并行度自动推算,也就是说 flink run 脚本的 -yn / --yarncontainer 参数不起作用了(该参数用于设置 TaskManager 的个数)。那么自动推算的规则是什么呢?要弄清楚它,先来复习 Flink 的 并行度Parallelism)和 任务槽Task Slot)。

2.并行度(Parallelism)

与 Spark 类似地,一个 Flink Job 在生成执行计划时也划分成多个 Task。Task 可以是 Source、Sink、算子或算子链。Task 可以由多线程并发执行,每个线程处理 Task 输入数据的一个子集,而并发的数量就称为 Parallelism,即 并行度

Flink 程序中设定并行度有 4 种级别,从低到高分别为:算子级别执行环境级别ExecutionEnvironment)、客户端(命令行)级别配置文件级别flink-conf.yaml)。实际执行时,优先级则是反过来的,算子级别最高。简单示例如下:

  • 1️⃣ 算子级别
dataStream.flatMap(new SomeFlatMapFunction()).setParallelism(4);
  • 2️⃣ 执行环境级别
streamExecutionEnvironment.setParallelism(4);
  • 3️⃣ 命令行级别
bin/flink -run --parallelism 4 example-0.1.jar
  • 4️⃣ flink-conf.yaml 级别
parallelism.default: 4

3.任务槽(Task Slot)

Flink 运行时由两个组件组成:JobManager 与 TaskManager,与 Spark Standalone 模式下的 Master 与 Worker 是同等概念。

在这里插入图片描述
JobManager 和 TaskManager 本质上都是 JVM 进程。为了提高 Flink 程序的运行效率和资源利用率,Flink 在 TaskManager 中实现了 任务槽Task Slot)。任务槽是 Flink 计算资源的基本单位,每个任务槽可以在同一时间执行一个 Task,而 TaskManager 可以拥有一个或者多个任务槽。

任务槽可以实现 TaskManager 中不同 Task 的资源隔离,不过是逻辑隔离,并且只隔离内存,亦即在调度层面认为每个任务槽 “应该” 得到 taskmanager.heap.size 1 / N 1/N 1/N 大小的内存,CPU 资源不算在内。

TaskManager 的任务槽个数在使用 flink run 脚本提交 on YARN 作业时用 -ys / --yarnslots 参数来指定,另外在 flink-conf.yaml 文件中也有默认值 taskManager.numberOfTaskSlots。一般来讲,我们设定该参数时可以将它理解成一个 TaskManager 可以利用的 CPU 核心数,因此也要根据实际情况(集群的 CPU 资源和作业的计算量)来确定。

4.确定 TaskManager 数

以 Flink 自带示例中简化的 WordCount 程序为例:

// 执行环境并行度设为6
env.setParallelism(6);
// Source并行度为1
DataStream<String> text = env.readTextFile(params.get("input")).setParallelism(1);
DataStream<Tuple2<String, Integer>> counts = text.flatMap(new Tokenizer()).keyBy(0).sum(1);
counts.print();

--yarnslots 3 参数来执行,即每个 TaskManager 分配 3 个任务槽。TaskManager、任务槽和任务的分布将如下图所示,方括号内的数字为并行线程的编号。

在这里插入图片描述
由图中可以看出,由于算子链机制的存在,KeyAggSink 操作链接在了一起,作为一个 Task 来执行。

Flink 允许任务槽共享,即来自同一个 Job 的不同 SubTask(即 算子的并发实例)进入同一个槽位,因此在图中也可以见到任务槽 X 中同时存在 FlatMap[X]KeyAgg[X] + Sink[X]。任务槽共享有两点好处:

  • 能够让每个 SubTask 都均摊到不同的 TaskManager,避免负载倾斜。
  • 不需要再计算 App 一共需要起多少个 Task,因为作业需要的任务槽数量肯定等于 Job 中最大的并行度。

所以,可以得出 Flink on YARN 时,TaskManager 数 = Job 的最大并行度 / 每个TaskManager 分配的任务槽数,结果向上取整。例如,一个最大并行度为 10,每个 TaskManager 有 2 个任务槽的作业,就会启动 5 个 TaskManager,如 Web UI 所示。

在这里插入图片描述

这篇关于【大数据】Flink on YARN,如何确定 TaskManager 数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690784

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient