动态规划---序列问题(最长公共,最长递增,最长公共递增,最长数对,最长摆动)

2024-02-08 06:38

本文主要是介绍动态规划---序列问题(最长公共,最长递增,最长公共递增,最长数对,最长摆动),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.最长递增子序列

    /** 最长递增子序列* */public int lengthOfLIS(int[] nums) {//方案一:时间复杂度0(N^2)int n = nums.length;if (n == 0) return 0;int dp[] = new int[n];//dp[i]表示以i元素结尾最长递增子序列的长度dp[0] = 1;int maxL = 1;for (int i = 1; i < n; i++) {dp[i] = 1;//注意这个位置for (int j = 0; j < i; j++) {if (nums[j] < nums[i]) {dp[i] = Math.max(dp[i], dp[j] + 1);}}maxL = Math.max(maxL, dp[i]);}return maxL;}/** 维持一个有序数组tail[],tail[i]表示递增子序列长度为i+1时,最末尾的最小元素.* */public int lengthOfLIS2(int[] nums) {//方案二:时间复杂度0(NlogN)int n = nums.length;if (n == 0) return 0;int tail[]=new int[nums.length];tail[0]=nums[0];int j=0;/** 遍历所有元素。* 如果它大于 tails 数组所有的值,那么把它添加到 tails 后面,表示最长递增子序列长度加 1* 如果 tails[i-1] < x <= tails[i],那么更新 tails[i] = x。* */for(int i=1;i<nums.length;i++){int index=binarySearch(tail,j,nums[i]);tail[index]=nums[i];if(index==j+1) j++;}return j+1;}public int binarySearch(int a[],int count,int k){//找到第一个大于或等于k的元素索引(找到大于等于k的最小元素的索引),如果找不到返回count+1int start=0;int end=count;int index=-1;int elem=Integer.MAX_VALUE;while (start<=end){int mid=(start+end)/2;if(k<=a[mid]){if(a[mid]<elem) {elem = a[mid];index = mid;}end=mid-1;}else{start=mid+1;}}return index==-1?count+1:index;}

2. 一组整数对能够构成的最长链

/** 最长数对链* 题目描述:* 给出 n 个数对。 在每一个数对中,第一个数字总是比第二个数字小。* 现在,我们定义一种跟随关系,当且仅当 b < c 时,数对(c, d) 才可以跟在 (a, b) 后面。我们用这种形式来构造一个数对链。* 给定一个对数集合,找出能够形成的最长数对链的长度。你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。* *///动态规划方法解决public int findLongestChain(int[][] pairs) {int num = 0;int n = pairs.length;if (n == 0) return 0;Arrays.sort(pairs, new Comparator<int[]>() {@Overridepublic int compare(int[] o1, int[] o2) {return o1[0] - o2[0];}});int dp[] = new int[n];//dp[i]表示以第i个数对结尾的最大长度int max = 1;for (int i = 0; i < pairs.length; i++) {dp[i] = 1;for (int j = 0; j < i; j++) {if (pairs[i][0] > pairs[j][1]) {dp[i] = Math.max(dp[i], dp[j] + 1);}}max = Math.max(max, dp[i]);}return max;}//贪心方法解决public int findLongestChain2(int[][] pairs) {/** 优先选择数对 尾值更小的,给 组合后面的数对 留更多的机会* */if (pairs == null || pairs.length == 0) return 0;int n = pairs.length;Arrays.sort(pairs, new Comparator<int[]>() {@Overridepublic int compare(int[] o1, int[] o2) {return o1[1] - o2[1];}});int curEnd = pairs[0][1];int sum = 1;for (int i = 1; i < n; i++) {if (pairs[i][0] > curEnd) {sum++;curEnd = pairs[i][1];}}return sum;}

3.最长摆动子序列

 /** 摆动序列* 题目描述:如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。* 给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。* 思路:见程序中注释* 解释:up,down的每一次更新(up=down+1,down=up+1),都意味着更新了 最长摆动子序列的末尾curEnd,虽然最长长度可能没更新。* 连续上升(下降),最长长度不会变,变的是最长摆动子序列的末尾curEnd* (隐晦一点解释:有升才有降,有降才有升)* */public int wiggleMaxLength(int[] nums) {int down = 1;//down维护了此时 摆动序列以down操作结尾的 最长长度int up = 1; //up维护了此时 摆动序列以up操作结尾的 最长长度for (int i = 1; i < nums.length; i++) {if (nums[i] > nums[i - 1]) {up = down + 1;//up在down的基础上上升} else if (nums[i] < nums[i - 1]) {down = up + 1;//down在up的基础上下降}}/** 解决质疑:*  1.连续下降时,程序为什么将curEnd更新为后面的,也就是说为什么curEnd会更新为越小的值?*  因为在等待下一次上升时,只要比curEnd大,就可以完成上升操作。所以curEnd越小,上升的机会就越大,那么累计的序列就越长*  2.会不会出现  在等待下降时,隔了很多个元素才满足下降条件,就累计不到了  这种情况?*  不会。例如序列[4,5,7,8,9,3] 在4等待下降时,直观来看,4和3之间隔了很多个元素,这几个元素一定都会比4大, 程序早已将curEnd更新为了9,9>3则累计。*  再例如序列[4,9,6,8,7,3] 在4等待下降时,直观来看,4和3之间隔了很多元素, 这些元素呈现了一个摆动状态,能确保者之间的摆动被累计了吗?*  可以确保,其实,当元素遍历到9时curEnd不再是4,而是9了(虽然最长长度没更新,但最长摆动子序列的末尾curEnd被更新了),然后再继续累计9下降到6的情况,以此类推。* */return Math.min(nums.length, Math.max(down, up));}

4.最长公共子序列

 /**  dp[i][j]表示S1前i个字符和S2前j个字符的最长公共子序列的长度值* 当 S1i==S2j 时,那么就能在 S1 的前 i-1 个字符与 S2 的前 j-1 个字符最长公共子序列的基础上再加上 S1i 这个值,最长公共子序列长度加 1,即 dp[i][j] = dp[i-1][j-1] + 1。* 当 S1i != S2j 时,此时最长公共子序列为 S1 的前 i-1 个字符和 S2 的前 j 个字符最长公共子序列,或者 S1 的前 i 个字符和 S2 的前 j-1 个字符最长公共子序列,取它们的最大者,即 dp[i][j] = max{ dp[i-1][j], dp[i][j-1] }。* */public int longestCommonSubsequence2(String S1, String S2) {int len1 = S1.length();int len2 = S2.length();if (len1 == 0 || len2 == 0) return 0;int dp[][]=new int[len1+1][len2+1];int book[][]=new int[len1+1][len2+1];//记录dp[i][j]的更新情况,找到最长公共子序列for(int i=1;i<=len1;i++){for(int j=1;j<=len2;j++){if(S1.charAt(i-1)==S2.charAt(j-1)){dp[i][j]=dp[i-1][j-1]+1;book[i][j]=1;//代表最大值在此时更新}else{if(dp[i-1][j]>dp[i][j-1]){dp[i][j]=dp[i-1][j];book[i][j]=2;//代表更新为dp[i-1][j]的值}else{dp[i][j]=dp[i][j-1];book[i][j]=3;//代表更新为dp[i][j-1]的值}}}}int i=len1,j=len2;while (i>=0&&j>=0){if(book[i][j]==1) {System.out.print(S1.charAt(i-1)+" ");i--;j--;}else if(book[i][j]==2) i--;else j--;}return dp[len1][len2];//最长公共子序列的长度}

5.最长公共递增子序列

public class MaxLenOfCommonIncrease {//只过了80%,超时了public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();while (n-- != 0) {int l1 = scanner.nextInt();int s1[] = new int[l1];for (int i = 0; i < l1; i++) {s1[i] = scanner.nextInt();}int l2 = scanner.nextInt();int s2[] = new int[l2];for (int j = 0; j < l2; j++) {s2[j] = scanner.nextInt();}int dp[][] = new int[l1][l2];//dp[i][j]表示s1列表中前i个元素,s2列表中前j个元素,并且以s2[j]为末尾的最长公共递增序列的长度for(int j=0;j<l2;j++) dp[0][j]= s1[0]==s2[j]?1:0;for(int i=0;i<l1;i++) dp[i][0]= s2[0]==s1[i]?1:0;for(int i=1;i<l1;i++){for(int j=1;j<l2;j++){dp[i][j]=dp[i-1][j];if(s1[i]==s2[j]){for(int k=0;k<j;k++){if(s2[j]>s2[k]) dp[i][j]=Math.max(dp[i][j],dp[i-1][k]+1);}dp[i][j]=Math.max(1,dp[i][j]);}}}int res = 0;for (int j = 0; j < l2; ++j)res = Math.max(res, dp[l1-1][j]);System.out.println(res);}}
}
/*
这种方法可以全过,但不是很懂public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();while (n-- != 0) {int l1 = scanner.nextInt();int s1[] = new int[l1];for (int i = 0; i < l1; i++) {s1[i] = scanner.nextInt();}int l2 = scanner.nextInt();int s2[] = new int[l2];for (int j = 0; j < l2; j++) {s2[j] = scanner.nextInt();}int dp[][] = new int[505][505];for (int i = 0; i <l1; i++) {int max = 0;for (int j = 0; j <l2; j++) {dp[i + 1][j + 1] = dp[i][j + 1];if (s1[i] > s2[j])max = Math.max(max, dp[i][j + 1]);if (s1[i] == s2[j]) {dp[i + 1][j + 1] = max + 1;}}}int res = 0;for (int j = 1; j <= l2; ++j)res = Math.max(res, dp[l1][j]);System.out.println(res);}}*/

这篇关于动态规划---序列问题(最长公共,最长递增,最长公共递增,最长数对,最长摆动)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690185

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模