c++ dp基础0/1背包细讲(动态规划)

2024-02-08 00:08

本文主要是介绍c++ dp基础0/1背包细讲(动态规划),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、0/1背包是什么
  • 二、使用方法
    • 1、0/1背包
      • 刷表法
      • 代码解:
  • 三、例题


一、0/1背包是什么

一般是问几个物品和一个容积,问最大的价值

二、使用方法

1、0/1背包

一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的重量分别是W1,W2,…,Wn,它们的价值分别为C1,C2,…,Cn.若每种物品只有一件求旅行者能获得最大总价值。

一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的重量分别是W1,W2,…,Wn,它们的价值分别为C1,C2,…,Cn.若每种物品只有一件求旅行者能获得最大总价值。
输入格式:

第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30);w 第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。

输出格式:

仅一行,一个数,表示最大总价值。

限制:

空间限制:128MByte
时间限制:1秒

样例:

输入:10 4
2 1
3 3
4 5
7 9
输出:12

这就是一个标准的0/1背包问题
为了找到这个问题的状态转移方程,我们可以使用刷表法:

刷表法

刷表,顾名思义,就是用一个表记录状态,然后总结自己填表时的思想规律,从而找到状态转移方程
我来举个例子:

这时候是不是就可以得到状态转移方程了
先不急,理一下思路
背包问题,其实就是在选或者不选中选择,如果选,就加上价值后再加上减去重量后可到达的最大值,如果不选,就选择在这个重量下可获得的最大价值
状态转移方程就是:

dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);

代码解:

所以这道题的代码就是:

#include<iostream>
using namespace std;
int dp[40][210]; 
int w[40],c[40];
int main(){int m,n;cin>>m>>n;for(int i=1;i<=n;i++)cin>>w[i]>>c[i];for(int i=1;i<=n;i++){for(int v=m;v>0;v--){if(w[i]>v) dp[i][v]=dp[i-1][v]; else dp[i][v]=max(dp[i-1][v],dp[i-1][v-w[i]]+c[i]);}}cout<<dp[n][m];return 0;
}

三、例题

装箱问题

有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积			    		
(正整数)。要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。

输入格式:

每个测试文件只包含一组测试数据,每组输入的第一行为一个整数V(0<=V<=20000),表示箱子的容量。第二行输入一个整数n(0<n<=30),表示有n个物品。接下来n行,每行输入一个正整数,表示每个物品的体积。

输出格式:

对于每组输入数据,输出一个整数,表示箱子剩余空间。

限制:

空间限制:125MByte
时间限制:1秒

样例:

输入:24
6
8
3
12
7
9
7
输出:0

在这里插入图片描述

根据这个简单的图表,不难发现:

不放:dp[i-1][j]

放:dp[i-1][j-w[i]]+w[i]

i是第几个物品,j是容量

理解一下

不放的话从上一层同样容量中选

放就是在背包可以放的情况下,把这一格放这个物品,再看剩下的空间可以放那些物品(在上一层中选)

比较放或不放哪一个大就好了

这是这道题的核心思想也是难点

所以这道题的关系方程是:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+w[i]

所以完整代码是:

#include<bits/stdc++.h>
using namespace std;
int dp[31][20005];
int w[20005];
int main(){int m,n;cin>>m>>n;for(int i=1;i<=n;i++)cin>>w[i];for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){int without=dp[i-1][j];int with=0;if(j>=w[i]){with=dp[i-1][j-w[i]]+w[i];}dp[i][j]=max(with,without);}}cout<<m-dp[n][m];return 0;
}

without是不放,with是放,

这里有个易错点,就是数组的范围,需要注意。

这篇关于c++ dp基础0/1背包细讲(动态规划)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689360

相关文章

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a