【动态规划】【子序列除重】【C++算法】1987不同的好子序列数目

2024-02-07 14:44

本文主要是介绍【动态规划】【子序列除重】【C++算法】1987不同的好子序列数目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【动态规划】【状态压缩】【2次选择】【广度搜索】1494. 并行课程 II

本文涉及知识点

动态规划汇总

LeetCode1987:不同的好子序列数目

给你一个二进制字符串 binary 。 binary 的一个 子序列 如果是 非空 的且没有 前导 0 (除非数字是 “0” 本身),那么它就是一个 好 的子序列。
请你找到 binary 不同好子序列 的数目。
比方说,如果 binary = “001” ,那么所有 好 子序列为 [“0”, “0”, “1”] ,所以 不同 的好子序列为 “0” 和 “1” 。 注意,子序列 “00” ,“01” 和 “001” 不是好的,因为它们有前导 0 。
请你返回 binary 中 不同好子序列 的数目。由于答案可能很大,请将它对 109 + 7 取余 后返回。
一个 子序列 指的是从原数组中删除若干个(可以一个也不删除)元素后,不改变剩余元素顺序得到的序列。
示例 1:
输入:binary = “001”
输出:2
解释:好的二进制子序列为 [“0”, “0”, “1”] 。
不同的好子序列为 “0” 和 “1” 。
示例 2:
输入:binary = “11”
输出:2
解释:好的二进制子序列为 [“1”, “1”, “11”] 。
不同的好子序列为 “1” 和 “11” 。
示例 3:
输入:binary = “101”
输出:5
解释:好的二进制子序列为 [“1”, “0”, “1”, “10”, “11”, “101”] 。
不同的好子序列为 “0” ,“1” ,“10” ,“11” 和 “101” 。
提示:
1 <= binary.length <= 105
binary 只含有 ‘0’ 和 ‘1’ 。

动态规划

除0外,不存在以0开始的子序列。如果存在0,则必定存在子序列{0}。以下的分析排除{0}。
排除{0}后任意合法子序列在后面增加0或1,都是合法子序列。

动态规划的状态表示

pre[0] 从binary[0,i)中选择若干字符,形成以0结束的合法子序列数量。pre[1]以1结束的子序列数量。
dp和pre类似,对应的是binary[0,i+1)。

动态规划的转移方程

binary[i]为1

{ p r e [ 0 ] 不选择当前字符,以 0 结束的字符数量 情况一 p r e [ 1 ] 不选择当前字符,以 1 结束的字符数 情况二 p r e [ 0 ] + p r e [ 1 ] + 1 选择当前字符,以 1 结束的字符数量。 情况三 \begin{cases} pre[0] & 不选择当前字符,以0结束的字符数量 & 情况一 \\ pre[1] & 不选择当前字符,以1结束的字符数 & 情况二 \\ pre[0]+pre[1]+1 & 选择当前字符,以1结束的字符数量。 & 情况三 \\ \end{cases} pre[0]pre[1]pre[0]+pre[1]+1不选择当前字符,以0结束的字符数量不选择当前字符,以1结束的字符数选择当前字符,以1结束的字符数量。情况一情况二情况三
情况三又可以分三种情况:
{ p r e [ 0 ] 倒数第二个字符是 0 情况三一 p r e [ 1 ] 倒数第二个字符是 1 情况三二 1 子序列 1 。 情况三三 \begin{cases} pre[0] & 倒数第二个字符是0 & 情况三一 \\ pre[1] & 倒数第二个字符是1 & 情况三二 \\ 1 & 子序列{1}。 & 情况三三 \\ \end{cases} pre[0]pre[1]1倒数第二个字符是0倒数第二个字符是1子序列1情况三一情况三二情况三三
情况一、情况二、情况三 内部不存在重复情况。
情况一以0结尾,情况二、三以1结尾,所以情况一和情况二(三)不会重复。
情况二所有的情况都和情况三重合,情况二分类:
{ 倒数第二个字符是 0 被情况三一包含 倒数第二个字符是 1 被情况三二包含 子序列 1 。 和情况三三重复 \begin{cases} 倒数第二个字符是0 & 被情况三一包含 \\ 倒数第二个字符是1 & 被情况三二包含 \\ 子序列{1}。 & 和情况三三 重复\\ \end{cases} 倒数第二个字符是0倒数第二个字符是1子序列1被情况三一包含被情况三二包含和情况三三重复

总结
dp[1] = pre[0]+pre[1]+1
dp[0] = pre[0]

binary[i]为0

不能为子序列{0}
dp[0] = pre[0]+pre[1]
dp[1] = pre[1]

动态规划的初始值

pre 全为0。

动态规划的返回值

pre之和。

代码

template<int MOD = 1000000007>
class C1097Int
{
public:C1097Int(long long llData = 0) :m_iData(llData% MOD){}C1097Int  operator+(const C1097Int& o)const{return C1097Int(((long long)m_iData + o.m_iData) % MOD);}C1097Int& operator+=(const C1097Int& o){m_iData = ((long long)m_iData + o.m_iData) % MOD;return *this;}C1097Int& operator-=(const C1097Int& o){m_iData = (m_iData + MOD - o.m_iData) % MOD;return *this;}C1097Int  operator-(const C1097Int& o){return C1097Int((m_iData + MOD - o.m_iData) % MOD);}C1097Int  operator*(const C1097Int& o)const{return((long long)m_iData * o.m_iData) % MOD;}C1097Int& operator*=(const C1097Int& o){m_iData = ((long long)m_iData * o.m_iData) % MOD;return *this;}bool operator<(const C1097Int& o)const{return m_iData < o.m_iData;}C1097Int pow(long long n)const{C1097Int iRet = 1, iCur = *this;while (n){if (n & 1){iRet *= iCur;}iCur *= iCur;n >>= 1;}return iRet;}C1097Int PowNegative1()const{return pow(MOD - 2);}int ToInt()const{return m_iData;}
private:int m_iData = 0;;
};class Solution {
public:int numberOfUniqueGoodSubsequences(string binary) {vector<C1097Int<>> pre(2);for (const auto& ch : binary){pre = {('0'==ch)? (pre[0] + pre[1]):pre[0],('1' == ch) ? (pre[0] + pre[1]+1) : pre[1] };}int iZero = std::count(binary.begin(), binary.end(), '0') > 0;return (pre[0] + pre[1] + iZero).ToInt();}
};

2023年2月

class C1097Int
{
public:
C1097Int(int iData = 0) :m_iData(iData)
{
}
C1097Int operator+(const C1097Int& o)const
{
return C1097Int(((long long)m_iData + o.m_iData) % s_iMod);
}
C1097Int& operator+=(const C1097Int& o)
{
m_iData = ((long long)m_iData + o.m_iData) % s_iMod;
return this;
}
C1097Int operator
(const C1097Int& o)const
{
return((long long)m_iData o.m_iData) % s_iMod;
}
C1097Int& operator
=(const C1097Int& o)
{
m_iData =((long long)m_iData *o.m_iData) % s_iMod;
return *this;
}
bool operator<(const C1097Int& o)const
{
return m_iData < o.m_iData;
}
C1097Int& pow( int n)const
{
C1097Int iRet = 1, iCur = *this;
while (n)
{
if (n & 1)
{
iRet *= iCur;
}
iCur *= iCur;
n >>= 1;
}
return iRet;
}
C1097Int PowNegative1()
{
return pow(s_iMod - 2);
}
int ToInt()const
{
return m_iData;
}
private:
int m_iData = 0;;
static const int s_iMod = 1000000007;
};

int operator+(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator+(C1097Int(iData)).ToInt();
return iRet;
}

int& operator+=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator+(C1097Int(iData)).ToInt();
return iData;
}

int operator*(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator*(C1097Int(iData)).ToInt();
return iRet;
}

int& operator*=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator*(C1097Int(iData)).ToInt();
return iData;
}

class Solution {
public:
int numberOfUniqueGoodSubsequences(string binary) {
vector pre(2);
for (const auto& ch : binary)
{
vector dp(2);
if (‘0’ == ch)
{
pre[0] += pre[1];
}
else
{
pre[1] += pre[0];
pre[1] += 1;
}
}
return (pre[0] + pre[1] + (int)(-1 != binary.find(‘0’))).ToInt();
}
};

2023年7月

class Solution {
public:
int numberOfUniqueGoodSubsequences(string binary) {
bool bHasZero = binary[0] == ‘0’;
vector<C1097Int<>> pre(2);
pre[1] = (binary[0] == ‘1’);
for (int i = 1; i < binary.size(); i++)
{
vector<C1097Int<>> dp = pre ;
if (‘0’ == binary[i])
{
bHasZero = true;
dp[0] = pre[0] + pre[1];
}
else
{
dp[1] = pre[0] + pre[1] + 1;
}
pre.swap(dp);
}
return (C1097Int<>(bHasZero) + pre[0] + pre[1]).ToInt();

}

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【子序列除重】【C++算法】1987不同的好子序列数目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688046

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以