Pandas读取某列、某行数据——loc、iloc用法总结

2024-02-06 13:20

本文主要是介绍Pandas读取某列、某行数据——loc、iloc用法总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。

目录

1.loc方法

(1)读取第二行的值

 (2)读取第二列的值

(3)同时读取某行某列

(4)读取DataFrame的某个区域

(5)根据条件读取

(6)也可以进行切片操作

2.iloc方法

(1)读取第二行的值

 (2)读取第二行的值

(3)同时读取某行某列

(4)进行切片操作


loc:通过行、列的名称或标签来索引

iloc:通过行、列的索引位置来寻找数据

首先,我们先创建一个Dataframe,生成数据,用于下面的演示

import pandas as pd
import numpy as np# 生成DataFrame
data = pd.DataFrame(np.arange(30).reshape((6,5)),columns=['A','B','C','D','E'])
# 写入本地
data.to_excel("D:\\实验数据\\data.xls", sheet_name="data")
print(data)

1.loc方法

loc方法是通过行、列的名称或者标签来寻找我们需要的值。

(1)读取第二行的值

# 索引第二行的值,行标签是“1”
data1 = data.loc[1]

        结果:

备注:
#下面两种语法效果相同data.loc[1] == data.loc[1,:]

 (2)读取第二列的值

# 读取第二列全部值
data2 = data.loc[ : ,"B"]

        结果:

(3)同时读取某行某列

# 读取第1行,第B列对应的值
data3 = data.loc[ 1, "B"]

        结果:

(4)读取DataFrame的某个区域

# 读取第1行到第3行,第B列到第D列这个区域内的值
data4 = data.loc[ 1:3, "B":"D"]

        结果:

(5)根据条件读取

# 读取第B列中大于6的值
data5 = data.loc[ data.B > 6] #等价于 data5 = data[data.B > 6]

        结果:

(6)也可以进行切片操作

# 进行切片操作,选择B,C,D,E四列区域内,B列大于6的值
data1 = data.loc[ data.B >6, ["B","C","D","E"]]

结果:

2.iloc方法

iloc方法是通过索引行、列的索引位置[index, columns]来寻找值

(1)读取第二行的值

# 读取第二行的值,与loc方法一样data1 = data.iloc[1]# data1 = data.iloc[1, :],效果与上面相同

        结果:

 (2)读取第二列的值

# 读取第二列的值
data1 = data.iloc[:, 1]

        结果:

(3)同时读取某行某列

# 读取第二行,第二列的值
data1 = data.iloc[1, 1]

        结果:

(4)进行切片操作

# 按index和columns进行切片操作
# 读取第2、3行,第3、4列
data1 = data.iloc[1:3, 2:4]

        结果:

注意:

这里的区间是左闭右开,data.iloc[1:3, 2:4]中的第4行、第5列取不到

这篇关于Pandas读取某列、某行数据——loc、iloc用法总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684440

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

SpringBoot UserAgentUtils获取用户浏览器的用法

《SpringBootUserAgentUtils获取用户浏览器的用法》UserAgentUtils是于处理用户代理(User-Agent)字符串的工具类,一般用于解析和处理浏览器、操作系统以及设备... 目录介绍效果图依赖封装客户端工具封装IP工具实体类获取设备信息入库介绍UserAgentUtils

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处