Pytorch卷积层原理和示例 nn.Conv1d卷积 nn.Conv2d卷积

2024-02-06 13:04

本文主要是介绍Pytorch卷积层原理和示例 nn.Conv1d卷积 nn.Conv2d卷积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容列表

一,前提
二,卷积层原理
1.概念
2.作用
3. 卷积过程
三,nn.conv1d
1,函数定义:
2, 参数说明:
3,代码:
4, 分析计算过程
四,nn.conv2d
1, 函数定义
2, 参数:
3, 代码
4, 分析计算过程

一,前提

在开始前,要使用pytorch实现以下内容,需要掌握tensor和的用法

二,卷积层原理

1.概念

卷积层是用一个固定大小的矩形区去席卷原始数据,将原始数据分成一个个和卷积核大小相同的小块,然后将这些小块和卷积核相乘输出一个卷积值(注意这里是一个单独的值,不再是矩阵了)。

2.作用

特征提取

卷积的本质就是用卷积核的参数来提取原始数据的特征,通过矩阵点乘的运算,提取出和卷积核特征一致的值,如果卷积层有多个卷积核,则神经网络会自动学习卷积核的参数值,使得每个卷积核代表一个特征。

3. 卷积过程

在这里插入图片描述

三,nn.conv1d

这里我们拿最常用的conv1d举例说明卷积过程的计算。

conv1d是一维卷积,它和conv2d的区别在于只对宽度进行卷积,对高度不卷积。

1,函数定义:

torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

2, 参数说明:

**input:**输入的Tensor数据,格式为(batch,channels,W),三维数组,第一维度是样本数量,第二维度是通道数或者记录数。三维度是宽度。

**weight:**卷积核权重,也就是卷积核本身。是一个三维数组,(out_channels, in_channels/groups, kW)。out_channels是卷积核输出层的神经元个数,也就是这层有多少个卷积核;in_channels是输入通道数;kW是卷积核的宽度。

**bias:**位移参数,可选项,一般也不用管。

**stride:**滑动窗口,默认为1,指每次卷积对原数据滑动1个单元格。

**padding:**是否对输入数据填充0。Padding可以将输入数据的区域改造成是卷积核大小的整数倍,这样对不满足卷积核大小的部分数据就不会忽略了。通过padding参数指定填充区域的高度和宽度,默认0(就是填充区域为0,不填充的意思)

**dilation:**卷积核之间的空格,默认1。

**groups:**将输入数据分组,通常不用管这个参数,没有太大意义。

3,代码:

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as Fa=range(16)
x = Variable(torch.Tensor(a))
'''
a: range(0, 16)
x: tensor([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13.,14., 15.])
'''x=x.view(1,1,16)
'''
x variable: tensor([[[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13., 14., 15.]]])
'''b=torch.ones(3)
b[0]=0.1
b[1]=0.2
b[2]=0.3
weights = Variable(b)
weights=weights.view(1,1,3)
'''
weights: tensor([[[0.1000, 0.2000, 0.3000]]])
'''y=F.conv1d(x, weights, padding=0)
'''
y: tensor([[[0.8000, 1.4000, 2.0000, 2.6000, 3.2000, 3.8000, 4.4000, 5.0000, 5.6000, 6.2000, 6.8000, 7.4000, 8.0000, 8.6000]]])
'''

上面出现了 x.view(1,1,16) view的用法参考我之前的博客
Pytorch-view的用法
上面出现了 Variable(torch.Tensor(a)) Tensor和Variable的用法参考我之前的博客
pytorch入门 Variable 用法
PyTorch Tensor的初始化和基本操作

4, 分析计算过程

(1) 原始数据大小是0-15的一共16个数字,卷积核宽度是3,向量是[0.1,0.2,0.3]。 我们看第一个卷积是对x[0:3]共3个值[0,1,2]进行卷积,公式如下:

00.1+10.2+2*0.3=0.8
在这里插入图片描述

(2) 对第二个目标卷积,是x[1:4]共3个值[1,2,3]进行卷积,公式如下:

10.1+20.2+3*0.3=1.4
在这里插入图片描述

剩下的就以此类推

四,nn.conv2d

1, 函数定义

nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True))

2, 参数:

in_channel: 输入数据的通道数,例RGB图片通道数为3;

out_channel: 输出数据的通道数,这个根据模型调整;
  kennel_size: 卷积核大小,可以是int,或tuple;kennel_size=2,意味着卷积大小(2,2), kennel_size=(2,3),意味着卷积大小(2,3)即非正方形卷积
  stride:步长,默认为1,与kennel_size类似,stride=2,意味着步长上下左右扫描皆为2, stride=(2,3),左右扫描步长为2,上下为3;
  padding: 零填充

3, 代码

import torch
import torch.nn as nn
from torch.autograd import Variabler = torch.randn(5, 8, 10, 5) # batch, channel , height , width
print(r.shape)r2 = nn.Conv2d(8, 14, (3, 2), (2,1))  # in_channel, out_channel ,kennel_size,stride
print(r2)r3 = r2(r)
print(r3.shape)
torch.Size([5, 8, 10, 5])
Conv2d(8, 14, kernel_size=(3, 2), stride=(2, 1))
torch.Size([5, 14, 4, 4])

4, 分析计算过程

卷积公式:

h = (h - kennel_size + 2padding) / stride + 1
w = (w - kennel_size + 2padding) / stride + 1

r = ([5, 8, 10, 5]),其中h=10,w=5,对于卷积核长分别是 h:3,w:2 ;对于步长分别是h:2,w:1;padding默认0;

h = (10 - 3 + 20)/ 2 +1 = 7/2 +1 = 3+1 =4
w =(5 - 2 + 20)/ 1 +1 = 3/1 +1 = 3/1+1 =4

batch = 5, out_channel = 14

故: y= ([5, 14, 4, 4])

参考

这篇关于Pytorch卷积层原理和示例 nn.Conv1d卷积 nn.Conv2d卷积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684405

相关文章

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MyBatisX逆向工程的实现示例

《MyBatisX逆向工程的实现示例》本文主要介绍了MyBatisX逆向工程的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录逆向工程准备好数据库、表安装MyBATisX插件项目连接数据库引入依赖pom.XML生成实体类、

$在R语言中的作用示例小结

《$在R语言中的作用示例小结》在R语言中,$是一个非常重要的操作符,主要用于访问对象的成员或组件,它的用途非常广泛,不仅限于数据框(dataframe),还可以用于列表(list)、环境(enviro... 目录1. 访问数据框(data frame)中的列2. 访问列表(list)中的元素3. 访问jav

VSCode中配置node.js的实现示例

《VSCode中配置node.js的实现示例》本文主要介绍了VSCode中配置node.js的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一.node.js下载安装教程二.配置npm三.配置环境变量四.VSCode配置五.心得一.no

Android与iOS设备MAC地址生成原理及Java实现详解

《Android与iOS设备MAC地址生成原理及Java实现详解》在无线网络通信中,MAC(MediaAccessControl)地址是设备的唯一网络标识符,本文主要介绍了Android与iOS设备M... 目录引言1. MAC地址基础1.1 MAC地址的组成1.2 MAC地址的分类2. android与I

Spring框架中@Lazy延迟加载原理和使用详解

《Spring框架中@Lazy延迟加载原理和使用详解》:本文主要介绍Spring框架中@Lazy延迟加载原理和使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、@Lazy延迟加载原理1.延迟加载原理1.1 @Lazy三种配置方法1.2 @Component

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

Redis实现分布式锁全解析之从原理到实践过程

《Redis实现分布式锁全解析之从原理到实践过程》:本文主要介绍Redis实现分布式锁全解析之从原理到实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景介绍二、解决方案(一)使用 SETNX 命令(二)设置锁的过期时间(三)解决锁的误删问题(四)Re

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格