Pytorch卷积层原理和示例 nn.Conv1d卷积 nn.Conv2d卷积

2024-02-06 13:04

本文主要是介绍Pytorch卷积层原理和示例 nn.Conv1d卷积 nn.Conv2d卷积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容列表

一,前提
二,卷积层原理
1.概念
2.作用
3. 卷积过程
三,nn.conv1d
1,函数定义:
2, 参数说明:
3,代码:
4, 分析计算过程
四,nn.conv2d
1, 函数定义
2, 参数:
3, 代码
4, 分析计算过程

一,前提

在开始前,要使用pytorch实现以下内容,需要掌握tensor和的用法

二,卷积层原理

1.概念

卷积层是用一个固定大小的矩形区去席卷原始数据,将原始数据分成一个个和卷积核大小相同的小块,然后将这些小块和卷积核相乘输出一个卷积值(注意这里是一个单独的值,不再是矩阵了)。

2.作用

特征提取

卷积的本质就是用卷积核的参数来提取原始数据的特征,通过矩阵点乘的运算,提取出和卷积核特征一致的值,如果卷积层有多个卷积核,则神经网络会自动学习卷积核的参数值,使得每个卷积核代表一个特征。

3. 卷积过程

在这里插入图片描述

三,nn.conv1d

这里我们拿最常用的conv1d举例说明卷积过程的计算。

conv1d是一维卷积,它和conv2d的区别在于只对宽度进行卷积,对高度不卷积。

1,函数定义:

torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

2, 参数说明:

**input:**输入的Tensor数据,格式为(batch,channels,W),三维数组,第一维度是样本数量,第二维度是通道数或者记录数。三维度是宽度。

**weight:**卷积核权重,也就是卷积核本身。是一个三维数组,(out_channels, in_channels/groups, kW)。out_channels是卷积核输出层的神经元个数,也就是这层有多少个卷积核;in_channels是输入通道数;kW是卷积核的宽度。

**bias:**位移参数,可选项,一般也不用管。

**stride:**滑动窗口,默认为1,指每次卷积对原数据滑动1个单元格。

**padding:**是否对输入数据填充0。Padding可以将输入数据的区域改造成是卷积核大小的整数倍,这样对不满足卷积核大小的部分数据就不会忽略了。通过padding参数指定填充区域的高度和宽度,默认0(就是填充区域为0,不填充的意思)

**dilation:**卷积核之间的空格,默认1。

**groups:**将输入数据分组,通常不用管这个参数,没有太大意义。

3,代码:

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as Fa=range(16)
x = Variable(torch.Tensor(a))
'''
a: range(0, 16)
x: tensor([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13.,14., 15.])
'''x=x.view(1,1,16)
'''
x variable: tensor([[[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13., 14., 15.]]])
'''b=torch.ones(3)
b[0]=0.1
b[1]=0.2
b[2]=0.3
weights = Variable(b)
weights=weights.view(1,1,3)
'''
weights: tensor([[[0.1000, 0.2000, 0.3000]]])
'''y=F.conv1d(x, weights, padding=0)
'''
y: tensor([[[0.8000, 1.4000, 2.0000, 2.6000, 3.2000, 3.8000, 4.4000, 5.0000, 5.6000, 6.2000, 6.8000, 7.4000, 8.0000, 8.6000]]])
'''

上面出现了 x.view(1,1,16) view的用法参考我之前的博客
Pytorch-view的用法
上面出现了 Variable(torch.Tensor(a)) Tensor和Variable的用法参考我之前的博客
pytorch入门 Variable 用法
PyTorch Tensor的初始化和基本操作

4, 分析计算过程

(1) 原始数据大小是0-15的一共16个数字,卷积核宽度是3,向量是[0.1,0.2,0.3]。 我们看第一个卷积是对x[0:3]共3个值[0,1,2]进行卷积,公式如下:

00.1+10.2+2*0.3=0.8
在这里插入图片描述

(2) 对第二个目标卷积,是x[1:4]共3个值[1,2,3]进行卷积,公式如下:

10.1+20.2+3*0.3=1.4
在这里插入图片描述

剩下的就以此类推

四,nn.conv2d

1, 函数定义

nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True))

2, 参数:

in_channel: 输入数据的通道数,例RGB图片通道数为3;

out_channel: 输出数据的通道数,这个根据模型调整;
  kennel_size: 卷积核大小,可以是int,或tuple;kennel_size=2,意味着卷积大小(2,2), kennel_size=(2,3),意味着卷积大小(2,3)即非正方形卷积
  stride:步长,默认为1,与kennel_size类似,stride=2,意味着步长上下左右扫描皆为2, stride=(2,3),左右扫描步长为2,上下为3;
  padding: 零填充

3, 代码

import torch
import torch.nn as nn
from torch.autograd import Variabler = torch.randn(5, 8, 10, 5) # batch, channel , height , width
print(r.shape)r2 = nn.Conv2d(8, 14, (3, 2), (2,1))  # in_channel, out_channel ,kennel_size,stride
print(r2)r3 = r2(r)
print(r3.shape)
torch.Size([5, 8, 10, 5])
Conv2d(8, 14, kernel_size=(3, 2), stride=(2, 1))
torch.Size([5, 14, 4, 4])

4, 分析计算过程

卷积公式:

h = (h - kennel_size + 2padding) / stride + 1
w = (w - kennel_size + 2padding) / stride + 1

r = ([5, 8, 10, 5]),其中h=10,w=5,对于卷积核长分别是 h:3,w:2 ;对于步长分别是h:2,w:1;padding默认0;

h = (10 - 3 + 20)/ 2 +1 = 7/2 +1 = 3+1 =4
w =(5 - 2 + 20)/ 1 +1 = 3/1 +1 = 3/1+1 =4

batch = 5, out_channel = 14

故: y= ([5, 14, 4, 4])

参考

这篇关于Pytorch卷积层原理和示例 nn.Conv1d卷积 nn.Conv2d卷积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684405

相关文章

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

Java中的stream流分组示例详解

《Java中的stream流分组示例详解》Java8StreamAPI以函数式风格处理集合数据,支持分组、统计等操作,可按单/多字段分组,使用String、Map.Entry或Java16record... 目录什么是stream流1、根据某个字段分组2、按多个字段分组(组合分组)1、方法一:使用 Stri

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制