绝对完美解决hdfs datanode数据和磁盘数据分布不均调整(hdfs balancer )——经验总结

本文主要是介绍绝对完美解决hdfs datanode数据和磁盘数据分布不均调整(hdfs balancer )——经验总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hadoop集群Datanode数据倾斜,个别节点hdfs空间使用率达到95%以上,于是新增加了三个Datenode节点,由于任务还在跑,数据在不断增加中,这几个节点现有的200GB空间估计最多能撑20小时左右,所以必须要进行balance操作。

通过观察磁盘使用情况,发现balance的速度明显跟不上新增数据的速度!!!

跟踪了一下balance的日志,发现两个问题:
一是balance时原有的十几个节点都被列入了待balance的节点中,上面的数据分块移动到新增加的3个节点上,由于节点多,最迫切需要balance的几个节点轮到的机会很少;
二是balance的速度太慢了,Hadoop集群为了防止balance影响吞吐、I/O性能,默认balance的速度为1MB,这样一共8TB的数据需要balance,这需要太长时间了。

于是针对上述问题,进行了如下尝试:

  • 提高blance的速度,将默认的balance速度从1MB/s增大到50MB/s
#set balance to 50M/s
[hdfs@sudops.com hadoop]$ hdfs dfsadmin -setBalancerBandwidth 52428800
Balancer bandwidth is set to 52428800 for nn01.sudops.com/10.233.100.161:9000
Balancer bandwidth is set to 52428800 for nn02.sudops.com/10.233.100.162:9000
  • 调整balance的平衡比例:

将原来的%5 提高到20%,调整原则就是尽量先让balance影响到最需要平衡数据的节点。

简单说明一下:原有集群的hdfs占用率为80%,新增加3个节点后,集群hdfs的整体占用量为70%, 如果比例是%5的话,那么原有节点都在这个调整范围内,所以各个节点都要被balance,而接受balance的节点只有三个,所以轮到迫切需要balance的节点的概率就比较小;
如果调整到20%,那么原来使用量小于90%的节点都不会被balance,那几台占用量90%以上的节点才会被最先balance,这样只有3个节点符合这个条件,balance的精确性就高了很多。

综合以上两点,balance的效果好多了,解决了最紧迫的节点的磁盘占满的问题,balance的速度终于快于新增数据,20%时需要balance的数据为6TB左右,待这次balance结束后,再运行一次%5的balance,还有2TB的数据要balance,这样经过两次的balance的操作,集群基本平衡了。


hdfs dfsadmin -setBalancerBandwidth 52428800nohup hdfs balancer -threshold 20 &tail -F nohup.out

一、概述

hdfs 需要存写大量文件,有时磁盘会成为整个集群的性能瓶颈,所以需要优化 hdfs 存取速度,将数据目录配置多磁盘,既可以提高并发存取的速度,还可以解决一块磁盘空间不够的问题

Hadoop 环境部署可以参考我之前的文章:大数据Hadoop之——Hadoop 3.3.4 HA(高可用)原理与实现(QJM)

二、Hadoop DataNode多目录磁盘配置

1)配置hdfs-site.xml

在配置文件中$HADOOP_HOME/etc/hadoop/hdfs-site.xml添加如下配置:

<!-- dfs.namenode.name.dir是保存FsImage镜像的目录,作用是存放hadoop的名称节点namenode里的metadata-->
<property><name>dfs.namenode.name.dir</name><value>file:/opt/bigdata/hadoop/hadoop-3.3.4/data/namenode</value>
</property>
<!-- 存放HDFS文件系统数据文件的目录(存储Block),作用是存放hadoop的数据节点datanode里的多个数据块。 -->
<property><name>dfs.datanode.data.dir</name><value>/data1,/data2,/data3,/data4</value>
</property><!-- 设置数据存储策略,默认为轮询,现在的情况显然应该用“选择空间多的磁盘存”模式 -->
<property><name>dfs.datanode.fsdataset.volume.choosing.policy</name><value>org.apache.hadoop.hdfs.server.datanode.fsdataset.AvailableSpaceVolumeChoosingPolicy</value>
</property><!-- 默认值0.75。它的含义是数据块存储到可用空间多的卷上的概率,由此可见,这个值如果取0.5以下,对该策略而言是毫无意义的,一般就采用默认值。-->
<property><name>dfs.datanode.available-space-volume-choosing-policy.balanced-space-preference-fraction</name><value>0.75f</value>
</property><!-- 配置各个磁盘的均衡阈值的,默认为10G(10737418240),在此节点的所有数据存储的目录中,找一个占用最大的,找一个占用最小的,如果在两者之差在10G的范围内,那么块分配的方式是轮询。 -->
<property><name>dfs.datanode.available-space-volume-choosing-policy.balanced-space-threshold</name>         <value>10737418240</value>
</property>

【温馨提示】此处的dfs.namenode.name.dirdfs.datanode.data.dir位置需要不一样,不能是一个文件夹,之前设置成一个文件夹报错ERROR org.apache.hadoop.hdfs.server.common.Storage: It appears that another node 1003@iZ2zeh8q22e14pvqr3bu01Z has already locked the storage directory:
【原因】是当namenode启动后,锁定了文件夹,导致datanode无法启动。

2)配置详解

1、 dfs.datanode.data.dir

HDFS数据应该存储Block的地方。可以是逗号分隔的目录列表(典型的,每个目录在不同的磁盘)。这些目录被轮流使用,一个块存储在这个目录,下一个块存储在下一个目录,依次循环。每个块在同一个机器上仅存储一份。不存在的目录被忽略。必须创建文件夹,否则被视为不存在。

2、dfs.datanode.fsdataset.volume.cho

这篇关于绝对完美解决hdfs datanode数据和磁盘数据分布不均调整(hdfs balancer )——经验总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681935

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使