《合成孔径雷达成像算法与实现》Figure6.4

2024-02-05 19:04

本文主要是介绍《合成孔径雷达成像算法与实现》Figure6.4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

clc
clear
close all参数设置
距离向参数设置
R_eta_c = 20e3;             % 景中心斜距
Tr = 2.5e-6;                % 发射脉冲时宽
Kr = 20e12;                 % 距离向调频率
alpha_os_r = 1.2;           % 距离过采样率
Nrg = 320;                  % 距离线采样数
距离向参数计算
Bw = abs(Kr)*Tr;            % 距离信号带宽
Fr = alpha_os_r*Bw;         % 距离向采样率
Nr = round(Fr*Tr);          % 距离采样点数(脉冲序列长度)
方位向参数设置
c = 3e8;                    % 光速
Vr = 150;                   % 等效雷达速度
Vs = Vr;                    % 卫星平台速度
Vg = Vr;                    % 波束扫描速度
f0 = 5.3e9;                 % 雷达工作频率
Delta_f_dop = 80;           % 多普勒带宽
alpha_os_a = 1.25;          % 方位过采样率
Naz = 256;                  % 距离线数
theta_r_c = 3.5;            % 波束斜视角
方位向参数计算
lambda = c/f0;              % 雷达工作波长
eta_c = -R_eta_c*sind(theta_r_c)/Vr;% 波束中心偏移时间
f_eta_c = 2*Vr*sind(theta_r_c)/lambda;% 多普勒中心频率
La = 0.886*2*Vs*cosd(theta_r_c)/Delta_f_dop;% 实际天线长度
Fa = alpha_os_a*Delta_f_dop;% 方位向采样率
Ta = 0.886*lambda*R_eta_c/(La*Vg*cosd(theta_r_c));% 目标照射时间
R0 = R_eta_c*cosd(theta_r_c);% 最短斜距
Ka = 2*Vr^2*cosd(theta_r_c)^3/(lambda*R0);% 方位向调频率
theta_bw = 0.886*lambda/La; % 方位向3dB波束宽度
theta_syn = Vs/Vg*theta_bw; % 合成角
Ls = R_eta_c*theta_syn;     % 合成孔径
其他参数计算
rho_r = c/2/Bw;             % 距离向分辨率
rho_a = La/2;               % 方位向分辨率
Trg = Nrg/Fr;               % 发射脉冲宽度
Taz = Naz/Fa;               % 目标照射时间
d_t_tau = 1/Fr;             % 距离向采样时间间隔
d_t_eta = 1/Fa;             % 方位向采样时间间隔
d_f_tau = Fr/Nrg;           % 距离向采样频率间隔
d_f_eta = Fa/Naz;           % 方位向采样频率间隔目标设置
设置目标点距离景中心的距离
A_r = -50;A_a = -50;
B_r = -50;B_a = +50;
C_r = +50;C_a = B_a+(C_r-B_r)*tand(theta_r_c);
坐标
A_x = R0+A_r;A_y = A_a;
B_x = R0+B_r;B_y = B_a;
C_x = R0+C_r;C_y = C_a;
N_position = [A_x,A_y;B_x,B_y;C_x,C_y];
波束中心穿越时刻
N_target = 3;
Target_eta_c = zeros(1,N_target);
for i = 1:N_targetDelta_Y = N_position(i,2)-N_position(i,1)*tand(theta_r_c);Target_eta_c(i) = Delta_Y/Vs;
end
绝对零多普勒时刻
Target_eta_0 = zeros(1,N_target);
for i = 1:N_targetTarget_eta_0(i) = N_position(i,2)/Vs; 
end变量设置
时间变量:以景中心绝对零多普勒时刻作为方位向零点
t_tau = (-Trg/2:d_t_tau:Trg/2-d_t_tau)+2*R_eta_c/c;     % 距离时间变量
t_eta = (-Taz/2:d_t_eta:Taz/2-d_t_eta)+eta_c;           % 方位时间变量
r_tau = (t_tau*c/2)*cosd(theta_r_c);                    % 距离变量
% r_tau = (t_tau*c/2);                    % 距离变量
频率变量
f_tau = -Fr/2:d_f_tau:Fr/2-d_f_tau;                     % 距离频率变量
f_tau = f_tau-round((f_tau-0)/Fr)*Fr;                   % 将频率折叠入(-Fr/2,Fr/2),距离可观测频率变量
f_eta = -Fa/2:d_f_eta:Fa/2-d_f_eta;                     % 方位频率变量
f_eta = f_eta-round((f_eta-f_eta_c)/Fa)*Fa;             % 将频率折叠入f_eta_c附近(-Fa/2,Fa/2)范围,方位可观测频率变量
坐标设置
[t_tauX,t_etaY] = meshgrid(t_tau,t_eta);                % 距离时间X轴,方位时间Y轴
[f_tauX,f_etaY] = meshgrid(f_tau,f_eta);                % 距离频域X轴,方位频域Y轴信号设置,原始回波生成
tic                                                     % 计时,与toc搭配使用
wait_title = waitbar(0,'开始生成回波数据 ...'); 
pause(1);
st_tt = zeros(Naz,Nrg);
for i = 1:N_targetR_eta = sqrt(N_position(i,1)^2+Vs^2*(t_etaY-Target_eta_0(i)).^2);% 瞬时斜距,还有近似公式可以尝试A0 = [1,1,1,1]*exp(+1j*0);                          % 后向散射系数wr = (abs(t_tauX-2*R_eta/c)<=Tr/2);                 % 距离向包络wa = sinc(0.886*atan(Vs*(t_etaY-Target_eta_c(i))/N_position(i,1))/theta_bw).^2;% 方位向包络,用波束穿越时刻
%     wa = sinc(0.886*(atan(Vs*(t_etaY-Target_eta_0(i))/N_position(i,1))+theta_r_c)/theta_bw).^2;st_tt_target = A0(i)*wr.*wa.*exp(-1j*4*pi*f0*R_eta/c)....*exp(1j*pi*Kr*(t_tauX-2*R_eta/c).^2);st_tt = st_tt+st_tt_target;pause(0.001);time = toc;Display_Data = num2str(roundn(i/N_target*100,-1));Display_Str  = ['Computation Progress',Display_Data,'%',' --- ',...'Using Time: ',num2str(time)];waitbar(i/N_target,wait_title,Display_Str);         % 三参数:进度,句柄,展示的话
end
pause(1);
close(wait_title);
toc一次距离压缩
方式三:根据脉冲频谱特性直接在频域生成频域匹配滤波器
window = kaiser(Nrg,2.5)';              % 时域窗
Window = fftshift(window);              % 频域窗
% figure,plot(window)
% figure,plot(Window)
Hrf = (abs(f_tauX)<=Bw/2).*Window.*exp(1j*pi*f_tauX.^2/Kr);
Sf_ft = fft(st_tt,Nrg,2);
Srf_tf = Sf_ft.*Hrf;
srt_tt = ifft(Srf_tf,Nrg,2);绘图
H = figure();
set(H,'position',[50,50,600,300]);
subplot(121)
imagesc(real(srt_tt)),xlim([0,150])
xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(a)实部')
subplot(122)
imagesc(abs(srt_tt)),xlim([0,150])
xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(b)虚部')

这篇关于《合成孔径雷达成像算法与实现》Figure6.4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681868

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4