Fink CDC数据同步(六)数据入湖Hudi

2024-02-05 17:20
文章标签 数据 同步 fink hudi cdc 入湖

本文主要是介绍Fink CDC数据同步(六)数据入湖Hudi,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据入湖Hudi

Apache Hudi(简称:Hudi)使得您能在hadoop兼容的存储之上存储大量数据,同时它还提供两种原语,使得除了经典的批处理之外,还可以在数据湖上进行流处理。这两种原语分别是:

  • Update/Delete记录:Hudi使用细粒度的文件/记录级别索引来支持Update/Delete记录,同时还提供写操作的事务保证。查询会处理最后一个提交的快照,并基于此输出结果。
  • 变更流:Hudi对获取数据变更提供了一流的支持:可以从给定的时间点获取给定表中已updated/inserted/deleted的所有记录的增量流,并解锁新的查询姿势(类别)。

配置

将hudi相关jar包放在flink安装目录的lib下

hudi-flink1.16-bundle-0.13.0.jar

hudi-hadoop-mr-0.13.0.jar

hudi-hive-sync-0.13.0.jar

确保/etc/profile配置了hadoop和hive的环境变量

#HADOOP_HOME
export HADOOP_HOME=/usr/hdp/3.1.5.0-152/hadoop
export HADOOP_CONF_DIR=/usr/hdp/3.1.5.0-152/hadoop/etc/hadoop
export HADOOP_COMMON_HOME=/usr/hdp/3.1.5.0-152/hadoop
export HADOOP_HDFS_HOME=/usr/hdp/3.1.5.0-152/hadoop
export HADOOP_YARN_HOME=/usr/hdp/3.1.5.0-152/hadoop
export HADOOP_MAPRED_HOME=/usr/hdp/3.1.5.0-152/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export HADOOP_CLASSPATH=`hadoop classpath`#HIVE HOME
export HIVE_HOME=/usr/hdp/3.1.5.0-152/hive
export PATH=$PATH:$HIVE_HOME/bin:$HIVE_HOME/sbin

测试插入hudi表

set sql-client.execution.result-mode = tableau;
set execution.checkpointing.interval=30sec;
SET table.sql-dialect=default;CREATE TABLE hudi_test(uuid VARCHAR(20) PRIMARY KEY NOT ENFORCED,name VARCHAR(10),age INT,ts TIMESTAMP(3),`partition` VARCHAR(20)
)
PARTITIONED BY (`partition`)
WITH ('connector' = 'hudi',  -- 连接器指定hudi'path' = 'hdfs://bigdata101:8020/hudi/hudi_test',  -- 数据存储地址'table.type' = 'MERGE_ON_READ' -- 表类型,默认COPY_ON_WRITE,可选MERGE_ON_READ
);INSERT INTO hudi_test VALUES('id1','Danny',23,TIMESTAMP '1970-01-01 00:00:01','par1'),('id2','Stephen',33,TIMESTAMP '1970-01-01 00:00:02','par1'),('id3','Julian',53,TIMESTAMP '1970-01-01 00:00:03','par2'),('id4','Fabian',31,TIMESTAMP '1970-01-01 00:00:04','par2'),('id5','Sophia',18,TIMESTAMP '1970-01-01 00:00:05','par3'),('id6','Emma',20,TIMESTAMP '1970-01-01 00:00:06','par3'),('id7','Bob',44,TIMESTAMP '1970-01-01 00:00:07','par4'),('id8','Han',56,TIMESTAMP '1970-01-01 00:00:08','par4');

MySql数据写入Hudi表

建hudi表

create table hudi_user(id string not null,name string,birth string,gender string,primary key (id) not enforced
)
with ('connector' = 'hudi','path' = 'hdfs://bigdata101:8020/hudi/hudi_user','table.type' = 'MERGE_ON_READ','write.option' = 'bulk_insert','write.precombine.field' = 'id'
);

将MySql映射表的数据插入hudi表,此时会生成一个flink任务

insert into ods.hudi_user select * from mysql_user;

流式查询

上面的查询方式是非流式查询,流式查询会生成一个flink作业,并且实时显示数据源变更的数据。

流式查询(Streaming Query)需要设置read.streaming.enabled = true。再设置read.start-commit,如果想消费所有数据,设置值为earliest。

使用参数如下:

参数名称

是否必填

默认值

备注

read.streaming.enabled

FALSE

FALSE

设置为true,开启stream query

read.start-commit

FALSE

the latest commit

Instant time的格式为:’yyyyMMddHHmmss’

read.streaming_skip_compaction

FALSE

FALSE

是否不消费compaction commit,消费compaction commit会出现重复数据

clean.retain_commits

FALSE

10

当开启change log mode,保留的最大commit数量。如果checkpoint interval为5分钟,则保留50分钟的change log

建表:

create table hudi_user_read_streaming(id int not null ,name string,birth string,gender string,primary key (id) not enforced
)
with ('connector' = 'hudi','path' = 'hdfs://bigdata101:8020/hudi/hudi_user','table.type' = 'MERGE_ON_READ','write.option' = 'bulk_insert','write.precombine.field' = 'id','read.streaming.enabled' = 'true',  -- 默认值false,设置为true,开启stream query'read.start-commit' = '20231008134557', -- start-commit之前提交的数据不显示,'read.streaming.check-interval' = '4'  -- 检查间隔,默认60s);insert into hudi_user_read_streaming select * from mysql_user;select * from hudi_user_read_streaming;

此时,执行select 语句就会生成一个flink 作业

源端变更数据会实时展示出来


 

 系列文章

Fink CDC数据同步(一)环境部署icon-default.png?t=N7T8https://blog.csdn.net/weixin_44586883/article/details/136017355?spm=1001.2014.3001.5502​​​​​​​
Fink CDC数据同步(二)MySQL数据同步icon-default.png?t=N7T8https://blog.csdn.net/weixin_44586883/article/details/136017472?spm=1001.2014.3001.5501
Fink CDC数据同步(三)Flink集成Hiveicon-default.png?t=N7T8https://blog.csdn.net/weixin_44586883/article/details/136017571?spm=1001.2014.3001.5501
Fink CDC数据同步(四)Mysql数据同步到Kafkaicon-default.png?t=N7T8https://blog.csdn.net/weixin_44586883/article/details/136023747?spm=1001.2014.3001.5501
Fink CDC数据同步(五)Kafka数据同步Hiveicon-default.png?t=N7T8https://blog.csdn.net/weixin_44586883/article/details/136023837?spm=1001.2014.3001.5501

Fink CDC数据同步(六)数据入湖Hudiicon-default.png?t=N7T8https://blog.csdn.net/weixin_44586883/article/details/136023939?spm=1001.2014.3001.5502

这篇关于Fink CDC数据同步(六)数据入湖Hudi的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/681629

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数