深度学习(生成式模型)—— Consistency Models

2024-02-05 14:28

本文主要是介绍深度学习(生成式模型)—— Consistency Models,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 预备知识:SDE与ODE
  • Method
  • 实验结果

前言

Diffusion model需要多次推断才能生成最终的图像,这将耗费大量的计算资源。前几篇博客我们已经介绍了加速Diffusion model生成图像速率的DDIM和Stable Diffusion,本节将介绍最近大火的Consistency Models(代表模型:Dalle-3),其允许Diffusion model仅经过一次推断就生成最终的图像,同时也允许少量多次推断来生成最终的图像。

预备知识:SDE与ODE

yang song博士在《Score-Based Generative Modeling Through Stochastic Differential Equations》一文中提出可以使用SDE(随机微分方程)来刻画Diffusion model的前向过程,并且用SDE统一了Score-based Model (NCSN)和DDPM的前向过程反向过程。此外,SDE对应了多个前向过程,即从一张图到某个噪声点的加噪方式有多种,但其中存在一个ODE(常微分方程)形式的前向过程,即不存在随机变量的确定性的前向过程。

具体可查看前一篇博客score-based generative modeling through stochastic differential equations

Method

在这里插入图片描述
Consistency Models的核心可总结为上图,在一条ODE轨迹上(可以简单理解为从一个图像到某个噪声点,每一个步骤加的噪声都是特定的,比如第一步加的噪声为0.1,第二步加的噪声为0.2,一旦图像确定了,则对应的噪声点也会被确定),训练一个模型 f θ ( x t , t ) f_\theta(x_t,t) fθ(xt,t),其满足对于任意的 t 、 t ′ t、t' tt,模型的输出都一致,即
f θ ( x t , t ) = f θ ( x t ′ , t ′ ) (1.0) f_\theta(x_t,t)=f_\theta(x_{t'},{t'})\tag{1.0} fθ(xt,t)=fθ(xt,t)(1.0)

模型 f θ ( x t , t ) f_\theta(x_t,t) fθ(xt,t)即为Consistency Models,这里有个关键点,即训练Consistency Models时,必须是在ODE轨迹上。如果是在SDE轨迹,如下图所示,则有一个x对应多个y的情况出现,从同一个点出发,第一次迭代对应的轨迹是黑线,第二次迭代对应的轨迹是红线,模型将很难收敛。

在这里插入图片描述

为了实现式1.0,则只需要采样ODE轨迹上的两个点 x t x_t xt x t ′ x_{t'} xt,在套用一个L2 或L1 loss即可。
我们可以使用一系列的ODE solver(即在反向过程中不会引入随机性噪声的Diffusion model,例如DDIM)来帮助我们确定ODE轨迹上的两个点。

注意到式1.0也是自监督学习的优化目标,因此也会有收敛到奔溃解的情况,比如模型所有参数都为0,因此作者选用了自监督学习中的MoCo解决此类问题。

上述思路总结出的训练策略为Consistency Distillation,一个训练范式如下图
在这里插入图片描述
如下图,作者也给出了上述算法一些理论上的性质,个人觉得不是本算法的核心,故不总结
在这里插入图片描述

此外,作者也提出了Consistency Training的训练策略,即通过往一张图像里持续添加一个固定的噪声来获得一个ODE轨迹

在这里插入图片描述

实验结果

CD表示训练策略为Consistency Distillation,CT表示训练策略为Consistency Training,整体表现上CD优于CT,Dalle3也是使用CD训练的。NFE表示反向过程迭代次数

在这里插入图片描述

这篇关于深度学习(生成式模型)—— Consistency Models的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681201

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可