python爬取前程无忧招聘用Hive做数据分析Sqoop存储到Mysql并可视化

本文主要是介绍python爬取前程无忧招聘用Hive做数据分析Sqoop存储到Mysql并可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、导出数据

导出为zh_all2.txt文件
在这里插入图片描述
在这里插入图片描述

二、上传数据

在这里插入图片描述
在这里插入图片描述

三、使用Flume传入HDFS

(1)编写conf文件
在flume的conf目录下新建文件
在这里插入图片描述

a1.sources=r1
a1.channels=c1
a1.sinks=s1a1.sources.r1.type=exec
a1.sources.r1.command=tail -F /opt/module/flume-1.9.0/conf/data/zh_all2.txt
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444a1.sinks.s1.type=HDFSa1.sinks.s1.type=hdfs://hadoop129:90000/user/flume/qcwy_txt
a1.sinks.s1.hdfs.rollCount=0
a1.sinks.s1.hdfs.fileType=Datastream# 配置a1的channel组件c1的属性
a1.channels.c1.type=memory
a1.channels.c1.capacity=1000
a1.channels.c1.transactionCapacity=100
# 为source和sink组件绑定channel
a1.sources.r1.channels=c1
a1.sinks.k1.channel=c1

文件传入成功
在这里插入图片描述

四、数据分析

1、利用hive进行分析,2、将hive分析结果利用sqoop技术存储到mysql数据库中,并最后显示分析结果

1、启动Hive导入zh_all2.txt数据

在这里插入图片描述

2、查看table表qcwy2

在这里插入图片描述

3、岗位薪资分析

分析“数据分析”、“大数据开发工程师”、“数据采集”等岗位的平均工资、最高工资、最低工资,并作条形图将结果展示出来

A. 数据分析岗位
(1)模糊匹配提取
以模糊匹配提取出数据分析岗位的记录,存入表f_x_1(只存Jobtitle和wages字段)
在这里插入图片描述
(2)切分薪资字段存储

create table f_x_2 as select Jobtitle, regexp_extract(wages,'([0-9]+)-',1) as a_min, regexp_extract(wages,'-([0-9]+)',1) as a_max, (regexp_extract(wages,'([0-9]+)-',1) + regexp_extract(wages,'-([0-9]+)',1))/2 as a_avg from f_x_1;

数据分析
在这里插入图片描述

数据采集
在这里插入图片描述
在这里插入图片描述
大数据
在这里插入图片描述
在这里插入图片描述
(3)计算最大 、最小、平均

create table f_x_3 as select "数据分析" as Jobtitle, min(int(a_min)*0.1) as s_min, max(int(a_max)*0.1) as s_max, regexp_extract(avg(a_avg),'([0-9]+.[0-9]?[0-9]?)',1)*0.1 as s_avg from f_x_2;

在这里插入图片描述
在这里插入图片描述
汇总
(4)、下面查询大数据、数据采集方法类似、然后汇总为一张总表

在这里插入图片描述

四、使用sqoop存到mysql

(1)在mysql创建数据库数据表
进入数据库:mysql -u root -p
在这里插入图片描述
创建qcwy_db数据库
在这里插入图片描述
使用qcwy_db数据库创建表

(1)创建表:create table tab1(t_name varchar(20), t_min int, t_max int, t_avg varchar(10)) charset utf8 collate utf8_general_ci;
在这里插入图片描述
(2)导入数据

bin/sqoop export --connect jdbc:mysql://hadoop129:3306/qcwy_db  --username root --password 1 --table tab1 --export-dir /user/hive/warehouse/qcwy_db.db/tab1 --input-null-string "\\\\N" --input-null-non-string "\\\\N" --input-fields-terminated-by "\001" --input-lines-terminated-by "\\n" -m 1 

在这里插入图片描述
查询导入的数据
在这里插入图片描述
查询城市岗位数
在这里插入图片描述

可视化分析

创建远程访问mysql数据库用户

 GRANT ALL PRIVILEGES ON *.* TO 'admin'@'%' IDENTIFIED BY '1' WITH GRANT OPTION; 

在这里插入图片描述

1、岗位薪资分析

在这里插入图片描述

import pymysql
from pyecharts.charts import Bar
from pyecharts import options as opts
class MysqlTool:def __init__(self,host,user,password,database,port = 3306,charset = 'utf8'):self.host = hostself.user = userself.password = passwordself.database = databaseself.port = portself.charset = charsetdef connect(self):#连接数据库self.conn = pymysql.connect(host = self.host,user = self.user,password = self.password,database = self.database,port = self.port,charset = self.charset)self.cursor = self.conn.cursor() #cursor获取游标#增删改#sql:要执行的sql语句#args:带参sql的值#返回受影响的行数def __cud(self,sql,args = None):#私有row_count = 0try:self.connect()row_count = self.cursor.execute(sql,args)#execute执行self.conn.commit()#commit提交self.close()except Exception as e:print(e)return row_count#插入def insert(self,sql,args):return self.__cud(sql,args)#修改def updata(self,sql,args):return self.__cud(sql,args)#删除def delete(self,sql,args):return self.__cud(sql,args)#查询一条信息def get_one(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)result=self.cursor.fetchone()self.close()return resultexcept Exception as e:print(e)#查询多条信息def get_all(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)#  连接,获取光标,执行# result=self.cursor.execute()result=self.cursor.fetchall()#返回结果self.close()return resultexcept Exception as e:print(e)#关闭连接def close(self):self.cursor.close()self.conn.close()mt = MysqlTool('192.168.10.129', 'root', '1', 'hive')
def show_text():sql = "select * from work_1"result = mt.get_all(sql)
#得到职位名称
def show_name(list):vv = []for v in list:name = ''a = re.findall('[\u4e00-\u9fa5]', str(v))for i in a:name += ivv.append(name)#print(vv)return vv
#
def show_bar_chart1(data1,cc):ll = data1# 创建3个空数组average_Pay_level = []max_Pay_level = []min_Pay_level = []#循环向数组添加数据for i in ll:data = pd.DataFrame(list(db.find(i)))bb = data['wages'].valuesmax_Pay_level.append(Pay_level_list(bb)[0])average_Pay_level.append(Pay_level_list(bb)[1])min_Pay_level.append(Pay_level_list(bb)[2])show(max_Pay_level, average_Pay_level, min_Pay_level, cc)
#data为工资列表
#统一格式后,输出最大,平均,最小
def Pay_level_list(data):ww = [".*?千/月", ".*?万/月", ".*?万/年", ".*?元/天"]Pay_level_list = []for i in data:if isinstance(i, str):for j, v in enumerate(ww):if re.search(v, i) is not None:if j == 0:num = [round(i, 2) for i in([(i * 12 / 10) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]elif j == 1:num = [round(i, 2) for i in([(i * 12) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]elif j == 2:num = [round(i, 2) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))]elif j == 3:num = [round(i, 2) for i in([(i * 365 / 10000) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]Pay_level_list.append(num_al(num))return max(Pay_level_list), tall_num(Pay_level_list), min(Pay_level_list)
#求平均值
def tall_num(list):num = 0for i in list:num += ireturn round(num/(len(list)+1), 2)
def num_al(list):if len(list) >= 2:num = (list[0] + list[1]) / 2else:num = list[0]return round(num, 2)
#输出条形图
def show(a, b, c, d):name=d  #d = x轴标题(abcd个数要对应)y1 = a  # a = 最高工资列表y2 = b  #b = 平均工资列表y3 = c  #c = 最低工资x = pd.np.arange(len(name))width = 0.25plt.bar(x, y1, width=width, label='最高工资', color='red')plt.bar(x + width, y2, width=width, label='平均工资', color='deepskyblue', tick_label=name)plt.bar(x + 2 * width, y3, width=width, label='最低工资', color='green')# 显示在图形上的值for a, b in zip(x, y1):plt.text(a, b + 0.1, b, ha='center', va='bottom')for a, b in zip(x, y2):plt.text(a + width, b + 0.1, b, ha='center', va='bottom')for a, b in zip(x, y3):plt.text(a + 2 * width, b + 0.1, b, ha='center', va='bottom')plt.xticks()plt.legend(loc="upper left")  # 防止label和图像重合显示不出来plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签plt.ylabel('月/K')plt.xlabel('岗位名称')plt.rcParams['savefig.dpi'] = 300  # 图片像素plt.rcParams['figure.dpi'] = 300  # 分辨率plt.rcParams['figure.figsize'] = (15.0, 8.0)  # 尺寸plt.title("工资分析")plt.savefig('D:\\result.png')plt.show()

2、岗位数量分析

在这里插入图片描述

import pymysql
from pyecharts.charts import Bar
from pyecharts import options as opts
class MysqlTool:def __init__(self,host,user,password,database,port = 3306,charset = 'utf8'):self.host = hostself.user = userself.password = passwordself.database = databaseself.port = portself.charset = charsetdef connect(self):#连接数据库self.conn = pymysql.connect(host = self.host,user = self.user,password = self.password,database = self.database,port = self.port,charset = self.charset)self.cursor = self.conn.cursor() #cursor获取游标#增删改#sql:要执行的sql语句#args:带参sql的值#返回受影响的行数def __cud(self,sql,args = None):#私有row_count = 0try:self.connect()row_count = self.cursor.execute(sql,args)#execute执行self.conn.commit()#commit提交self.close()except Exception as e:print(e)return row_count#插入def insert(self,sql,args):return self.__cud(sql,args)#修改def updata(self,sql,args):return self.__cud(sql,args)#删除def delete(self,sql,args):return self.__cud(sql,args)#查询一条信息def get_one(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)result=self.cursor.fetchone()self.close()return resultexcept Exception as e:print(e)#查询多条信息def get_all(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)#  连接,获取光标,执行# result=self.cursor.execute()result=self.cursor.fetchall()#返回结果self.close()return resultexcept Exception as e:print(e)#关闭连接def close(self):self.cursor.close()self.conn.close()mt = MysqlTool('192.168.10.129', 'root', '1', 'hive')
def show_text():sql = "select * from work_1"result = mt.get_all(sql)
#得到职位名称
def show_name(list):vv = []for v in list:name = ''a = re.findall('[\u4e00-\u9fa5]', str(v))for i in a:name += ivv.append(name)return vv#饼图实现
def pie_chart(list1):city = list1city1 = []city2 = []for i in city:city1.append(i["recruiters"])#拿到公司名mm = show_name(city1)for j, v in enumerate(city):bb = len(pd.DataFrame(list(db.find(v))))city2.append(bb)mm[j] += str(bb)plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签sizes = city2# explode = (0.1, 0, 0, 0, 0)plt.pie(sizes, labels=mm, autopct='%1.1f%%', shadow=False, startangle=150)  # 想要突出plt.title("饼图示例-岗位数")plt.show()

三、岗位经验分析

在这里插入图片描述

import pymysql
from pyecharts.charts import Bar
from pyecharts import options as opts
class MysqlTool:def __init__(self,host,user,password,database,port = 3306,charset = 'utf8'):self.host = hostself.user = userself.password = passwordself.database = databaseself.port = portself.charset = charsetdef connect(self):#连接数据库self.conn = pymysql.connect(host = self.host,user = self.user,password = self.password,database = self.database,port = self.port,charset = self.charset)self.cursor = self.conn.cursor() #cursor获取游标#增删改#sql:要执行的sql语句#args:带参sql的值#返回受影响的行数def __cud(self,sql,args = None):#私有row_count = 0try:self.connect()row_count = self.cursor.execute(sql,args)#execute执行self.conn.commit()#commit提交self.close()except Exception as e:print(e)return row_count#插入def insert(self,sql,args):return self.__cud(sql,args)#修改def updata(self,sql,args):return self.__cud(sql,args)#删除def delete(self,sql,args):return self.__cud(sql,args)#查询一条信息def get_one(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)result=self.cursor.fetchone()self.close()return resultexcept Exception as e:print(e)#查询多条信息def get_all(self,sql,args=None):try:self.connect()self.cursor.execute(sql,args)#  连接,获取光标,执行# result=self.cursor.execute()result=self.cursor.fetchall()#返回结果self.close()return resultexcept Exception as e:print(e)#关闭连接def close(self):self.cursor.close()self.conn.close()mt = MysqlTool('192.168.10.129', 'root', '1', 'hive')
def show_text():sql = "select * from work_1"result = mt.get_all(sql)
#data为工资列表
# 统一格式后,输出最大,平均,最小
def Pay_level_list(data):ww = [".*?千/月", ".*?万/月", ".*?万/年", ".*?元/天"]Pay_level_list = []for i in data:if isinstance(i, str):for j, v in enumerate(ww):if re.search(v, i) is not None:if j == 0:num = [round(i, 2) for i in([(i * 12 / 10) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]elif j == 1:num = [round(i, 2) for i in([(i * 12) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]elif j == 2:num = [round(i, 2) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))]elif j == 3:num = [round(i, 2) for i in([(i * 365 / 10000) for i in (list(map(float, re.findall(r"\d+\.?\d*", i))))])]Pay_level_list.append(num_al(num))return max(Pay_level_list), tall_num(Pay_level_list), min(Pay_level_list)
#求平均数
def tall_num(list):num = 0for i in list:num += ireturn round(num/(len(list)+1), 2)
def num_al(list):if len(list) >= 2:num = (list[0] + list[1]) / 2else:num = list[0]return round(num, 2)
#
def show_bar_chart1(xx,cc):#拿到工资数据ll = xx#创建3个空数组average_Pay_level = []max_Pay_level = []min_Pay_level = []#循环向数组添加数据for i in ll:data = pd.DataFrame(list(db.find(i)))bb = data['wages'].valuesmax_Pay_level.append(Pay_level_list(bb)[0])average_Pay_level.append(Pay_level_list(bb)[1])min_Pay_level.append(Pay_level_list(bb)[2])show(max_Pay_level, average_Pay_level, min_Pay_level, cc)def show(a, b, c, d):name=d  #d = x轴标题(abcd个数要对应)y1 = a  # a = 最高工资列表y2 = b  #b = 平均工资列表y3 = c  #c = 最低工资x = pd.np.arange(len(name))width = 0.25plt.bar(x, y1, width=width, label='最高工资', color='red')plt.bar(x + width, y2, width=width, label='平均工资', color='green', tick_label=name)plt.bar(x + 2 * width, y3, width=width, label='最低工资', color='pink')# 显示在图形上的值for a, b in zip(x, y1):plt.text(a, b + 0.1, b, ha='center', va='bottom')for a, b in zip(x, y2):plt.text(a + width, b + 0.1, b, ha='center', va='bottom')for a, b in zip(x, y3):plt.text(a + 2 * width, b + 0.1, b, ha='center', va='bottom')plt.xticks()plt.legend(loc="upper left")  # 防止label和图像重合显示不出来plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签plt.ylabel('月/K')plt.xlabel('经验年限')plt.rcParams['savefig.dpi'] = 300  # 图片像素plt.rcParams['figure.dpi'] = 300  # 分辨率plt.rcParams['figure.figsize'] = (15.0, 8.0)  # 尺寸plt.title("工作年限工资图")plt.savefig('D:\\result.png')plt.show()

这篇关于python爬取前程无忧招聘用Hive做数据分析Sqoop存储到Mysql并可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680397

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

mysql8.0.43使用InnoDB Cluster配置主从复制

《mysql8.0.43使用InnoDBCluster配置主从复制》本文主要介绍了mysql8.0.43使用InnoDBCluster配置主从复制,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录1、配置Hosts解析(所有服务器都要执行)2、安装mysql shell(所有服务器都要执行)3、

k8s中实现mysql主备过程详解

《k8s中实现mysql主备过程详解》文章讲解了在K8s中使用StatefulSet部署MySQL主备架构,包含NFS安装、storageClass配置、MySQL部署及同步检查步骤,确保主备数据一致... 目录一、k8s中实现mysql主备1.1 环境信息1.2 部署nfs-provisioner1.2.