基于动态阈值算法的黎明和黄昏时间海雾检测

2024-02-05 07:20

本文主要是介绍基于动态阈值算法的黎明和黄昏时间海雾检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

黎明和黄昏海雾检测

  • 一、概述
    • 1.存在的问题
    • 2.提出的方法
    • 3.数据集
    • 4.对比的算法
  • 二、详细步骤
    • 1.研究区域
    • 2.动态阈值算法
      • (1)光谱特征与太阳天顶角变化关系
      • (2)算法构造
      • (3)算法流程
    • 3.实验
  • 三、总结

参考文章:SEA FOG DETECTION BASED ON DYNAMIC THRESHOLD ALGORITHM AT DAWN AND DUSK TIM

一、概述

1.存在的问题

在黎明和黄昏时间时海雾的高发期,其对全天的海雾检测有重要的意义。
但是由于大多数的极地轨道卫星会受到时间分辨率和过境时间的影响,不能针对某一区域进行黎明和黄昏的海雾检测。

2.提出的方法

通过运用葵花8号卫星数据,分析海雾在黎明和黄昏的亮温和反射率变化,选择敏感波段,设定海雾的检测指标和动态阈值。

提出动态阈值法,有效检测黎明和黄昏海雾。

3.数据集

葵花8号卫星数据,研究的区域黄海,渤海地区。

4.对比的算法

二、详细步骤

1.研究区域

黄海渤海地区:
在这里插入图片描述

2.动态阈值算法

(1)光谱特征与太阳天顶角变化关系

在海雾检测中,夜晚和白天的海雾比较稳定,其光谱特征变化不大,所以在阈值选择上可以选择固定的阈值。但对于黎明和黄昏,其光谱特征变化很大,尤其是可见光和近红外波段的反射率,因此固定的阈值无法实现黎明和黄昏海雾的检测。

因为海雾的光谱特征变化与太阳天顶角有关,所以构建一种基于太阳天顶角的动态阈值方法,太阳天顶角在黎明和黄昏的范围设定为 [ 81 ° , 90 ° ) [81°,90°) [81°90°)

根选取10张黎明和黄昏的海雾图,得出可见波段海雾反射率太阳天顶角的关系。
从图中可以看出,随着太阳天顶角的增大,近红外波段反射率逐步减小到0
在这里插入图片描述
在远红外波段。只有第七波段与太阳天顶角成线性关系,其他波段没有关系。

波段7
在这里插入图片描述
波段14
在这里插入图片描述

(2)算法构造

根据上面所讲的不同波段的亮温随着反射率变化的线性关系。

我们可以得出以下公式,这就是根据训练数据获得的各波段与雾的关系公式。所以对输入的图像处理,符合这些公式的就是雾,不符合的就是其他。

在这里插入图片描述
接下来我会一个公式一个公式的解释:

第一个公式:
B 7 B_7 B7也就是波段7,可以看到波段7是随着太阳天顶角变化而线性变化的所以阈值的选择,需要符合这个公式(这个-3的取值为了让公式下移一部分,来保证在线上下两侧的数值符合这个公式。),也就是输入进来的图片的 B 7 B_7 B7必须要大于这个公式的值。

画线工具不太好
在这里插入图片描述

第二个公式
计算 B 1 B_1 B1 B 4 B_4 B4的和,这个的目的同样也是用来判断输出图片的 B 1 B_1 B1 B 4 B_4 B4波段,如果输出图片的 B 1 B_1 B1 B 4 B_4 B4加起来小于这个公式的值,说明不是雾。

第三个公式
计算 B 1 B_1 B1 B 4 B_4 B4的亮温差,当输入的照片 B 1 B_1 B1 B 4 B_4 B4的差在公式的范围内的话,说明是雾。
在这里插入图片描述
第四个公式
同理计算 B 3 B_3 B3 B 5 B_5 B5的亮温差,当输入的照片 B 3 B_3 B3 B 5 B_5 B5的差在公式的范围内的话,说明是雾。
在这里插入图片描述
第五个公式:(此处论文中似乎没有指出如何得出的此公式。)
计算 B 7 B_7 B7 B 1 4 B_14 B14的亮温差,由于只有 B 7 B_7 B7与太阳天顶角有线性关系,我猜测,此处公式得出的是按照 B 1 4 B_14 B14最大的亮温计算的,因为 B 1 4 B_14 B14的亮温离散分布且波动不大只有[280,282.5]所以影响不大。得出亮温差公式在公式分为内的属于雾。

	对于算法的构造还是不太明白的看流程图大概就懂了

(3)算法流程

流程非常简单,对于输入的图像符合标准的就是雾,不符合的就是其他。
在这里插入图片描述

3.实验

选取了黄渤海地区,根据中国气象局的预报作为验证数据。
在这里插入图片描述

在这里插入图片描述

三、总结

有两个问题:

1.青岛部分,天气并没有海雾,但是由于低云的影响,所以判断成了海雾。也就是说,低云和海雾的区分做的还是不太好有待优化。

2.在太阳天顶角到达88度后,近红外波段辐射率接近0,此时的海雾的亮温和海面的温度基本相同。说明很有可能将海面识别为雾,很难用此方法检测。

3.对于海雾和低云的分离,单纯从光谱特征很难分离他们。

这篇关于基于动态阈值算法的黎明和黄昏时间海雾检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680130

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到