Python使用zdppy_es国产框架操作Elasticsearch实现增删改查

本文主要是介绍Python使用zdppy_es国产框架操作Elasticsearch实现增删改查,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python使用zdppy_es国产框架操作Elasticsearch实现增删改查

本套教程配套有录播课程和私教课程,欢迎私信我。

在这里插入图片描述

Docker部署ElasticSearch7

创建基本容器

docker run -itd --name elasticsearch -p 9200:9200 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms2g -Xmx2g"  elasticsearch:7.17.17

配置账号密码

容器中配置文件的路径:

/usr/share/elasticsearch/config/elasticsearch.yml

把配置文件复制出来:

# 准备目录
sudo mkdir -p /docker
sudo chmod 777 -R /docker
mkdir -p /docker/elasticsearch/config
mkdir -p /docker/elasticsearch/data
mkdir -p /docker/elasticsearch/log# 拷贝配置文件
docker cp elasticsearch:/usr/share/elasticsearch/config/elasticsearch.yml /docker/elasticsearch/config/elasticsearch.yml

将配置文件修改为如下内容:

cluster.name: "docker-cluster"
network.host: 0.0.0.0
http.cors.enabled: true
http.cors.allow-origin: "*"
# 此处开启xpack
xpack.security.enabled: true

把本机的配置文件复制到容器里面:

docker cp /docker/elasticsearch/config/elasticsearch.yml elasticsearch:/usr/share/elasticsearch/config/elasticsearch.yml

重启ES服务:

docker restart elasticsearch

进入容器,设置es的密码:

docker exec -it elasticsearch bash
/usr/share/elasticsearch/bin/elasticsearch-setup-passwords interactive

执行上面的命令以后,输入y,会有如下提示,全都输入:zhangdapeng520

Please confirm that you would like to continue [y/N]yEnter password for [elastic]: 
Reenter password for [elastic]: 
Enter password for [apm_system]: 
Reenter password for [apm_system]: 
Passwords do not match.
Try again.
Enter password for [apm_system]: 
Reenter password for [apm_system]: 
Enter password for [kibana_system]: 
Reenter password for [kibana_system]: 
Enter password for [logstash_system]: 
Reenter password for [logstash_system]: 
Enter password for [beats_system]: 
Reenter password for [beats_system]: 
Enter password for [remote_monitoring_user]: 
Reenter password for [remote_monitoring_user]: 
Changed password for user [apm_system]
Changed password for user [kibana_system]
Changed password for user [kibana]
Changed password for user [logstash_system]
Changed password for user [beats_system]
Changed password for user [remote_monitoring_user]
Changed password for user [elastic]

将会得到如下用户名和密码:

elastic
zhangdapeng520apm_system
zhangdapeng520kibana_system
zhangdapeng520logstash_system
zhangdapeng520beats_system
zhangdapeng520remote_monitoring_user
zhangdapeng520

在宿主机中测试是否成功:

# 不带用户名密码
curl localhost:9200# 带用户名密码
curl localhost:9200 -u elastic

建立连接

from es import Elasticsearchauth = ("elastic", "zhangdapeng520")
es = Elasticsearch("http://192.168.234.128:9200/", basic_auth=auth)
print(es.info())

创建索引

from es import Elasticsearch# 连接es
auth = ("elastic", "zhangdapeng520")
edb = Elasticsearch("http://192.168.234.128:9200/", basic_auth=auth)# 创建索引
index = "user"
mappings = {"properties": {"id": {"type": "integer"},"name": {"type": "text"},"age": {"type": "integer"},}
}
edb.indices.create(index=index, mappings=mappings)# 删除索引
edb.indices.delete(index=index)

新增数据

from es import Elasticsearch# 连接es
auth = ("elastic", "zhangdapeng520")
edb = Elasticsearch("http://192.168.234.128:9200/", basic_auth=auth)# 创建索引
index = "user"
mappings = {"properties": {"id": {"type": "integer"},"name": {"type": "text"},"age": {"type": "integer"},}
}
edb.indices.create(index=index, mappings=mappings)# 添加数据
edb.index(index=index,id="1",document={"id": 1,"name": "张三","age": 23,}
)# 删除索引
edb.indices.delete(index=index)

根据ID查询数据

from es import Elasticsearch# 连接es
auth = ("elastic", "zhangdapeng520")
edb = Elasticsearch("http://192.168.234.128:9200/", basic_auth=auth)# 创建索引
index = "user"
mappings = {"properties": {"id": {"type": "integer"},"name": {"type": "text"},"age": {"type": "integer"},}
}
edb.indices.create(index=index, mappings=mappings)# 添加数据
edb.index(index=index,id="1",document={"id": 1,"name": "张三","age": 23,}
)# 查询数据
resp = edb.get(index=index, id="1")
print(resp["_source"])# 删除索引
edb.indices.delete(index=index)

批量新增数据

from es import Elasticsearch# 连接es
auth = ("elastic", "zhangdapeng520")
edb = Elasticsearch("http://192.168.234.128:9200/", basic_auth=auth)# 创建索引
index = "user"
mappings = {"properties": {"id": {"type": "integer"},"name": {"type": "text"},"age": {"type": "integer"},}
}
edb.indices.create(index=index, mappings=mappings)# 添加数据
data = [{"id": 1,"name": "张三1","age": 23,},{"id": 2,"name": "张三2","age": 23,},{"id": 3,"name": "张三3","age": 23,},
]
new_data = []
for u in data:new_data.append({"index": {"_index": index, "_id": f"{u.get('id')}"}})new_data.append(u)
edb.bulk(index=index,operations=new_data,refresh=True,
)# 查询数据
resp = edb.get(index=index, id="1")
print(resp["_source"])
resp = edb.get(index=index, id="2")
print(resp["_source"])
resp = edb.get(index=index, id="3")
print(resp["_source"])# 删除索引
edb.indices.delete(index=index)

查询所有数据

from es import Elasticsearch# 连接es
auth = ("elastic", "zhangdapeng520")
edb = Elasticsearch("http://192.168.234.128:9200/", basic_auth=auth)# 创建索引
index = "user"
mappings = {"properties": {"id": {"type": "integer"},"name": {"type": "text"},"age": {"type": "integer"},}
}
edb.indices.create(index=index, mappings=mappings)# 添加数据
data = [{"id": 1,"name": "张三1","age": 23,},{"id": 2,"name": "张三2","age": 23,},{"id": 3,"name": "张三3","age": 23,},
]
new_data = []
for u in data:new_data.append({"index": {"_index": index, "_id": f"{u.get('id')}"}})new_data.append(u)
edb.bulk(index=index,operations=new_data,refresh=True,
)# 查询数据
r = edb.search(index=index,query={"match_all": {}},
)
print(r)
print(r.get("hits").get("hits"))# 删除索引
edb.indices.delete(index=index)

提取搜索结果

from es import Elasticsearch# 连接es
auth = ("elastic", "zhangdapeng520")
edb = Elasticsearch("http://192.168.234.128:9200/", basic_auth=auth)# 创建索引
index = "user"
mappings = {"properties": {"id": {"type": "integer"},"name": {"type": "text"},"age": {"type": "integer"},}
}
edb.indices.create(index=index, mappings=mappings)# 添加数据
data = [{"id": 1,"name": "张三1","age": 23,},{"id": 2,"name": "张三2","age": 23,},{"id": 3,"name": "张三3","age": 23,},
]
new_data = []
for u in data:new_data.append({"index": {"_index": index, "_id": f"{u.get('id')}"}})new_data.append(u)
edb.bulk(index=index,operations=new_data,refresh=True,
)# 查询数据
r = edb.search(index=index,query={"match_all": {}},
)def get_search_data(data):new_data = []# 提取第一层hits = r.get("hits")if hits is None:return new_data# 提取第二层hits = hits.get("hits")if hits is None:return new_data# 提取第三层for hit in hits:new_data.append(hit.get("_source"))return new_dataprint(get_search_data(r))# 删除索引
edb.indices.delete(index=index)

根据ID修改数据

import timefrom es import Elasticsearch# 连接es
auth = ("elastic", "zhangdapeng520")
edb = Elasticsearch("http://192.168.234.128:9200/", basic_auth=auth)# 创建索引
index = "user"
mappings = {"properties": {"id": {"type": "integer"},"name": {"type": "text"},"age": {"type": "integer"},}
}
edb.indices.create(index=index, mappings=mappings)# 添加数据
data = [{"id": 1,"name": "张三1","age": 23,},{"id": 2,"name": "张三2","age": 23,},{"id": 3,"name": "张三3","age": 23,},
]
new_data = []
for u in data:new_data.append({"index": {"_index": index, "_id": f"{u.get('id')}"}})new_data.append(u)
edb.bulk(index=index,operations=new_data,refresh=True,
)# 修改
edb.update(index=index,id="1",doc={"id": "1","name": "张三333","age": 23,},
)# 查询数据
time.sleep(1)  # 等一会修改才会生效
r = edb.search(index=index,query={"match_all": {}},
)def get_search_data(data):new_data = []# 提取第一层hits = r.get("hits")if hits is None:return new_data# 提取第二层hits = hits.get("hits")if hits is None:return new_data# 提取第三层for hit in hits:new_data.append(hit.get("_source"))return new_dataprint(get_search_data(r))# 删除索引
edb.indices.delete(index=index)

根据ID删除数据

import timefrom es import Elasticsearch# 连接es
auth = ("elastic", "zhangdapeng520")
edb = Elasticsearch("http://192.168.234.128:9200/", basic_auth=auth)# 创建索引
index = "user"
mappings = {"properties": {"id": {"type": "integer"},"name": {"type": "text"},"age": {"type": "integer"},}
}
edb.indices.create(index=index, mappings=mappings)# 添加数据
data = [{"id": 1,"name": "张三1","age": 23,},{"id": 2,"name": "张三2","age": 23,},{"id": 3,"name": "张三3","age": 23,},
]
new_data = []
for u in data:new_data.append({"index": {"_index": index, "_id": f"{u.get('id')}"}})new_data.append(u)
edb.bulk(index=index,operations=new_data,refresh=True,
)# 删除
edb.delete(index=index, id="1")# 查询数据
time.sleep(1)  # 等一会修改才会生效
r = edb.search(index=index,query={"match_all": {}},
)def get_search_data(data):new_data = []# 提取第一层hits = r.get("hits")if hits is None:return new_data# 提取第二层hits = hits.get("hits")if hits is None:return new_data# 提取第三层for hit in hits:new_data.append(hit.get("_source"))return new_dataprint(get_search_data(r))# 删除索引
edb.indices.delete(index=index)

这篇关于Python使用zdppy_es国产框架操作Elasticsearch实现增删改查的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680021

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?