代码随想录算法训练营第三十八天 | 509. 斐波那契数、 70. 爬楼梯、746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第三十八天 | 509. 斐波那契数、 70. 爬楼梯、746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

过年回家,断更了一天,后面一定补上。

题目链接:509. 斐波那契数

文章讲解:代码随想录 509. 斐波那契数讲解

视频讲解:手把手带你入门动态规划 | leetcode:509.斐波那契数

思路和解法

题目:
斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。
想法:
今天正式开始动态规划的题目,很激动,其实没有那么难!每道dp题目我都会严格按照理论篇的五部曲理清思路解题。

class Solution {
public:int fib(int n) {//1、确定dp数组及下标意义 代表下标为n的斐波那契数//2、确定递推公式//3、dp数组如何初始化//4、确定遍历顺序//5、举例推到dp数组if (n <= 1) return n;//节省空间,只维护两个数int dp[2];dp[0] = 0;dp[1] = 1;for (int i = 2; i <= n; i++) {int sum = dp[0] + dp[1];//更新dp数组dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};

题目链接:70. 爬楼梯

文章讲解:代码随想录 70. 爬楼梯讲解

视频讲解:带你学透动态规划-爬楼梯|LeetCode:70.爬楼梯)

思路和解法

题目:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

class Solution {
public:int climbStairs(int n) {//1、确定dp数组及下标意义 dp[i]:上到第i阶有多少种方法//2、确定递推公式 到i阶有两种 i-1阶到i阶 i-2阶到i阶 所以到i阶方法是dp[i - 1] + dp[1 - 2]//3、dp数组初始化 dp[1] =  1, dp[2] = 2;//4、确定遍历顺序 从前向后遍历//5、举例推导dp数组if (n <= 2) return n;//只维护两个值int dp[2];dp[0] = 1;dp[1] = 2;for (int i = 3; i <= n; i++) {int sum = dp[0] + dp[1];dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};

题目链接:746. 使用最小花费爬楼梯

文章讲解:代码随想录 746. 使用最小花费爬楼梯讲解

视频讲解:动态规划开更了!| LeetCode:746. 使用最小花费爬楼梯

思路和解法

题目:
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {//1、确定dp数组及下标含义 dp[i]到i阶阶梯最小花费//2、确定递推公式 dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])//3、dp数组初始化 dp[0] = 0; dp[1] = 0;//4、确定遍历顺序 从前向后//5、举例推导dp数组if (cost.size() <= 1) return 0;//dp数组int dp[cost.size() + 1];dp[0] = 0;dp[1] = 0;//从下标2开始计算for (int i = 2; i <= cost.size(); i++) {dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.size()];}
};

这篇关于代码随想录算法训练营第三十八天 | 509. 斐波那契数、 70. 爬楼梯、746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/678898

相关文章

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安