ChatGPT高效提问—基础知识(LM、PLM以及LLM)

2024-02-04 09:52

本文主要是介绍ChatGPT高效提问—基础知识(LM、PLM以及LLM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ChatGPT高效提问—基础知识(LM、PLM以及LLM)

​ 了解语言模型(language model, LM)、预训练语言模型(pre-trained language model, PLM)和大型语言模型(large language model, LLM)对于优化prompt非常重要。这些模型属于自然语言处理领域中最强大、最先进的技术之列,并广泛用于各种NLP任务,例如文本生成、文本分类、情感分析和机器翻译等。

​ 在选择模型时,需要考虑数据量、任务类型和准确率等多个方面。了解不同模型的特点和适用范围以及工作原理,可以帮助我们更好地进行选择和优化。例如,ChatGPT是一种预训练语言模型,它使用Transformer架构来学习自然语言的规律和特征。如果我们需要执行文本生成任务,ChatGPT可能是一个很好的选择,因为它能够生产高质量且流畅的文本。而对于文本分类任务,一个经过优化的大型语言模型可能更适合,因为它具有更高的准确率和较好的泛化能力。

1.2.1 语言模型

​ 语言模型是一种用于自然语言处理的统计模型,它能够对语言序列进行建模和预测。在自然语言处理领域,它通常用于判断一个句子是否合理,并为执行其他任务提供基础。

​ 语言模型通过学习文本数据中词语或自发的统计规律,来预测下一个词语或字符的出现概率。这种能力使得语言模型能够执行生成新文本、评估句子流畅度、文本纠错、机器翻译等任务。

​ 常见的语言模型包括基于n-gram的统计模型和基于神经网络的模型,如循环神经网络(RNN)、长短时记忆网络(LSTM)和近来的Transformer模型。

​ 语言模型的训练过程通常涉及使用大规模的文本语料库来学习词语之间的关联关系。模型根据上下文信息预测下一个词语的出现概率,这可以通过最大似然估计等方法进行优化。

​ 语言模型在许多自然语言处理任务中发挥着重要作用,例如自然语音识别、机器翻译、语音生成、语音合成等。它们为计算机理解和生成自然语言提供了基础,并在文本生成、对话系统和智能助手等领域有广泛应用。

1.2. 2 预训练语言模型

​ 预训练语言模型是通过无监督学习在大规模语料库上进行预先训练得到模型。PLM可以学习自然语言中的基本特征和规律,从而应用于下游的多种自然语言处理任务,并且可以通过微调来适应特定的任务。

​ 例如,BERT(Bidirectional Encoder Representations from Transformers)是一种典型的预训练语言模型。在预训练阶段,BERT使用大规模无标注语料库来训练模型,学习自然语言的基本特征和规律。在下游任务(如问答系统、文本分类等)中,BERT可以通过微调来适应特定的任务,从而获得优秀的性能。

1.2.3 大型语言模型

​ 大型语言模型是指参数数量巨大的语言模型,通常需要海量数据和计算资源进行训练。LLM可以通过预训练来学习自然语言特征,并在不同的下游任务中进行微调,从而在自然语言处理中获得不错的效果。

​ 例如,OpenAI的GPT-3是一个具有数千亿参数的大学语言模型,它的预训练过程使用了大量互联网语料库,并且在许多下游任务(如文本分类、生成和问答等)上表现出色。

这篇关于ChatGPT高效提问—基础知识(LM、PLM以及LLM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677088

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1