【动态规划】【C++算法】1335 工作计划的最低难度

2024-02-04 04:36

本文主要是介绍【动态规划】【C++算法】1335 工作计划的最低难度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【动态规划】【字符串】【表达式】2019. 解出数学表达式的学生分数

本文涉及知识点

动态规划汇总

LeetCode1335. 工作计划的最低难度

你需要制定一份 d 天的工作计划表。工作之间存在依赖,要想执行第 i 项工作,你必须完成全部 j 项工作( 0 <= j < i)。
你每天 至少 需要完成一项任务。工作计划的总难度是这 d 天每一天的难度之和,而一天的工作难度是当天应该完成工作的最大难度。
给你一个整数数组 jobDifficulty 和一个整数 d,分别代表工作难度和需要计划的天数。第 i 项工作的难度是 jobDifficulty[i]。
返回整个工作计划的 最小难度 。如果无法制定工作计划,则返回 -1 。
示例 1:
输入:jobDifficulty = [6,5,4,3,2,1], d = 2
输出:7
解释:第一天,您可以完成前 5 项工作,总难度 = 6.
第二天,您可以完成最后一项工作,总难度 = 1.
计划表的难度 = 6 + 1 = 7
示例 2:
输入:jobDifficulty = [9,9,9], d = 4
输出:-1
解释:就算你每天完成一项工作,仍然有一天是空闲的,你无法制定一份能够满足既定工作时间的计划表。
示例 3:
输入:jobDifficulty = [1,1,1], d = 3
输出:3
解释:工作计划为每天一项工作,总难度为 3 。
示例 4:
输入:jobDifficulty = [7,1,7,1,7,1], d = 3
输出:15
示例 5:
输入:jobDifficulty = [11,111,22,222,33,333,44,444], d = 6
输出:843

动态规划

预处理

如果任务数小于天数,直接返回-1。
vHard[left][r]表示第left项任务到第r项任务的最大难道。由于vHard[left[r+1] = max(vHard[left][r]+ jobDiffficulty[r+1]) 所有预处理的时间为O(n^n)。

动态规划的状态表示

pre[j]前i天完成j项任务最小难度,dp[j]前i+1天完成j项任务最小难度。

动态规划的转移方程

d p [ i ] = M i n j = 0 i − 1 dp[i]=Min\Large_{j=0}^{i-1} dp[i]=Minj=0i1(pre[j]+vHard[j][i-1])

动态规划的初始状态

dp[0]=0,其它全部1e6,表示非法状态。

动态规划的填表顺序

i,j 皆从小到大。

动态规划的返回值

pre.back

代码

核心代码

class Solution {
public:int minDifficulty(vector<int>& jobDifficulty, int d) {m_c = jobDifficulty.size();if (m_c < d){return -1;}vector<vector<int>> vHard(m_c, vector<int>(m_c));for (int i = 0; i < m_c; i++){vHard[i][i] = jobDifficulty[i];for (int j = i + 1; j < m_c; j++){vHard[i][j] = max(vHard[i][j - 1], jobDifficulty[j]);}}vector<int> pre(m_c + 1, m_iNotMay);pre[0] = 0;while(d--){vector<int> dp(m_c + 1, m_iNotMay);for (int j = 1; j <= m_c; j++){for (int k = 0; k < j; k++){dp[j] = min(dp[j], pre[k] + vHard[k][j-1]);}}pre.swap(dp);}return pre.back();}int m_c;const int m_iNotMay = 1000'000;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	vector<int> jobDifficulty;int d;{Solution sln;jobDifficulty = { 6, 5, 4, 3, 2, 1 }, d = 2;auto res = sln.minDifficulty(jobDifficulty, d);Assert(7, res);}{Solution sln;jobDifficulty = { 9, 9, 9 }, d = 4;auto res = sln.minDifficulty(jobDifficulty, d);Assert(-1, res);}{Solution sln;jobDifficulty = { 1, 1, 1 }, d = 3;auto res = sln.minDifficulty(jobDifficulty, d);Assert(3, res);}{Solution sln;jobDifficulty = { 7, 1, 7, 1, 7, 1 }, d = 3;auto res = sln.minDifficulty(jobDifficulty, d);Assert(15, res);}{Solution sln;jobDifficulty = { 11, 111, 22, 222, 33, 333, 44, 444 }, d = 6;auto res = sln.minDifficulty(jobDifficulty, d);Assert(843, res);}
}

2023年2月 第一版

class Solution {
public:
int minDifficulty(vector& jobDifficulty, int d) {
std::unordered_map<int, std::unordered_map<int, int>> mDayMaxJobIndexs;
mDayMaxJobIndexs[1][0] = jobDifficulty[0];
for (int i = 1; i < jobDifficulty.size(); i++)
{
std::unordered_map<int, std::unordered_map<int, int>> dp;
for (const auto& it : mDayMaxJobIndexs)
{
const int& iDay = it.first;
for (const auto& ij : it.second)
{
const int& iMaxJobIndex = ij.first;
const int& iValue = ij.second;
if (jobDifficulty[i] > jobDifficulty[iMaxJobIndex])
{
Test(dp, iDay, i, iValue + jobDifficulty[i] - jobDifficulty[iMaxJobIndex] );
}
else
{
Test(dp, iDay, iMaxJobIndex, iValue);
}
if (iDay < d)
{
Test(dp, iDay + 1, i, iValue + jobDifficulty[i]);
}
}
}
dp.swap(mDayMaxJobIndexs);
}
auto it = mDayMaxJobIndexs.find(d);
if (mDayMaxJobIndexs.end() == it)
{
return -1;
}
int iMin = INT_MAX;
for (const auto& ij : it->second)
{
iMin = min(iMin, ij.second);
}
return iMin;
}
void Test(std::unordered_map<int, std::unordered_map<int, int>>& dp, int iDay, int iMaxJobIndex, int iValue )
{
auto it = dp[iDay].find(iMaxJobIndex);
if (dp[iDay].end() == it)
{
dp[iDay][iMaxJobIndex] = iValue;
}
else
{
it->second = min(it->second, iValue);
}
}
};

2023年8月版

class Solution {
public:
int minDifficulty(vector& jobDifficulty, int d) {
m_c = jobDifficulty.size();
vector<vector> vMax(m_c, vector(m_c)); //vMax[i][i]表示[i,j]的最大值
for (int left = m_c - 1; left >= 0; left–)
{
vMax[left][left] = jobDifficulty[left];
for (int r = m_c-1 ; r > left; r–)
{
vMax[left][r] = max(jobDifficulty[left], vMax[left + 1][r]);
}
}
vector pre(m_c + 1, INT_MAX);//pre[i]表示已经处理了i项的最小难度
pre[0] = 0;
for (int i = 0; i < d; i++)
{
vector dp(m_c + 1, INT_MAX);
for (int cur = i + 1; cur <= m_c; cur++)
{
for (int pr = 0; pr < cur; pr++)
{
if (INT_MAX == pre[pr])
{
continue;
}
dp[cur] = min(dp[cur], pre[pr] + vMax[pr][cur - 1]);
}
}
pre.swap(dp);
}
return (INT_MAX == pre.back()) ? -1 : pre.back();
}
int m_c;
};

2023年8月 第二版

class Solution {
public:
int minDifficulty(vector& jobDifficulty, int d) {
m_c = jobDifficulty.size();
if (m_c < d)
{
return -1;
}
vector<vector> vMax(m_c, vector(m_c)); //vMax[i][i]表示[i,j]的最大值
for (int left = m_c - 1; left >= 0; left–)
{
vMax[left][left] = jobDifficulty[left];
for (int r = m_c-1 ; r > left; r–)
{
vMax[left][r] = max(jobDifficulty[left], vMax[left + 1][r]);
}
}
vector pre(m_c , INT_MAX);//pre[i]表示已经处理了i项的最小难度
for (int i = 0; i < d; i++)
{
vector dp(m_c , INT_MAX);
std::stack<std::tuple<int, int, int>> sta;//工作难度 dp[0]到当前的最小难度 被pop的pre最小难度
if (i > 0)
{
dp[i] = jobDifficulty[i] + pre[i - 1];
sta.emplace(jobDifficulty[i], dp[i], pre[i -1]);
}
else
{
dp[i] = jobDifficulty[i];
sta.emplace(jobDifficulty[i], dp[i], 0);
}
for (int cur = i+1; cur < m_c; cur++)
{
const int& curDiff = jobDifficulty[cur];
int iPrePopMin = pre[cur - 1];
while (sta.size() && (get<0>(sta.top()) <= curDiff))
{
iPrePopMin = min(iPrePopMin, get<2>(sta.top()));
sta.pop();
}
int curRet = (INT_MAX ==iPrePopMin) ? INT_MAX : (curDiff+iPrePopMin);
if (sta.size())
{
curRet = min(curRet, get<1>(sta.top()));
}
dp[cur] = curRet;
sta.emplace(curDiff, curRet, iPrePopMin);
}
pre.swap(dp);
}
return (INT_MAX == pre.back()) ? -1 : pre.back();
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【C++算法】1335 工作计划的最低难度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676357

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux之计划任务和调度命令at/cron详解

《Linux之计划任务和调度命令at/cron详解》:本文主要介绍Linux之计划任务和调度命令at/cron的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux计划任务和调度命令at/cron一、计划任务二、命令{at}介绍三、命令语法及功能 :at

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各