三门问题(Python运算蒙提霍尔问题)

2024-02-03 20:04

本文主要是介绍三门问题(Python运算蒙提霍尔问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三门问题

文章目录

  • 三门问题
    • 1.简介
    • 2.问题
    • 3.解答
      • 3.1 概率思维
      • 3.2 逆向思维
      • 3.3 推理思维
      • 3.4 代码验证

1.简介

Monty_open_door

蒙提霍尔问题(英文:Monty Hall problem),亦称为蒙特霍问题山羊问题三门问题,是一个源自博弈论的数学游戏问题,参赛者会看见三扇门,其中一扇门的里面有一辆汽车,选中里面是汽车的那扇门,就可以赢得该辆汽车,另外两扇门里面则都是一只山羊。当参赛者选定了一扇门,主持人会开启另一扇是山羊的门;并问:“要不要换一扇门?”依照玛丽莲·沃斯·莎凡特的见解,参赛者应该换,换门的话,赢得汽车的概率是2/3。这问题亦被叫做蒙提霍尔悖论:因为该问题的答案虽在逻辑上并无矛盾,但十分违反直觉。

蒙提霍尔问题得名于主持人蒙蒂·霍尔,他主持美国的电视游戏节目《Let’s Make a Deal(英语:Let’s Make a Deal)》时,会有这样的游戏,他也确实会先开启另一扇是山羊的门,来吸引观众眼球;但他不会允许参赛者换门。蒙提霍尔问题首次出现,可能是在1889年约瑟夫·贝特朗(英语:Joseph Bertrand)所著的_Calcul des probabilités_一书中。在这本书中,这条问题被称为“贝特朗箱子悖论(英语:Bertrand’s box paradox)”(Bertrand’s Box Paradox)。另一种形式则是三囚问题(Three prisoners problem),原理是一模一样的,1959年出现在马丁·加德纳的《数学游戏》专栏中,其后被改编成各种语言的版本。

2.问题

以下是蒙提霍尔问题的一个著名的叙述,来自Craig F. Whitaker于1990年寄给《展示杂志》(Parade Magazine)玛丽莲·沃斯·莎凡特(Marilyn vos Savant)专栏的信件:

假设你正在参加一个游戏节目,你被要求在三扇门中选择一扇:其中一扇后面有一辆车;其余两扇后面则是山羊。你选择了一道门,假设是一号门,然后知道门后面有什么的主持人,开启了另一扇后面有山羊的门,假设是三号门。他然后问你:“你想选择二号门吗?”变换你的选择对你来说是一种优势吗?

Selvin在随后寄给American Statistician的信件中(1975年8月)首次使用了“蒙提霍尔问题”这个名称。

Mueser和Granberg透过在主持人的行为身上加上明确的限制条件,提出了对这个问题的一种不含糊的陈述:

  1. 参赛者在三扇门中挑选一扇,他并不知道里面有什么。

  2. 主持人知道每扇门后面有什么。

  3. 主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。

  4. 主持人永远都会挑一扇有山羊的门。

    • 如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。

    • 如果参赛者挑了一扇有汽车的门,主持人随机(概率均匀分布)在另外两扇门中挑一扇有山羊的门。

  5. 参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。

变换选择可以增加参赛者的机会吗?

3.解答

玛丽莲·沃斯·莎凡特在1980年代中期因跻身《基尼斯世界纪录》中的智商纪录保持人而成名(结果为185)。当时她的答复在《大观杂志》刊出之后引起举世关注。她的解答彻底违反直觉,并引起众多数学家的质疑。但随后的阐释让质疑者颜面无光。显然,莎凡特的答案是正确的,当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。

3.1 概率思维

Monty_tree_door_math

共有三种可能的情况,全部都有相等的可能性(1/3):

  1. 参赛者挑汽车,主持人挑两头羊的任何一头。变换就会失去汽车。
  2. 参赛者挑A羊,主持人挑B羊。变换将赢得汽车。
  3. 参赛者挑B羊,主持人挑A羊。变换将赢得汽车。

在第一个情况的表述可以分成两种情况:

  • 参赛者挑汽车,主持人挑两头羊的任何一头。变换就会失去汽车。
    • 参赛者挑汽车,主持人挑A羊。变换将失败。
    • 参赛者挑汽车,主持人挑B羊。变换将失败。

在2和3两种情况,参赛者可以通过变换选择而赢得汽车。第一种情况是唯一一种参赛者保持原来选择而赢的情况。因为三种情况中有两种是通过变换选择会赢的,所以变换选择会赢的概率是2/3。

其他情况:

  1. 如果主持人并不知道那扇门后面有汽车,主持人随便打开一扇门(可能主持人会直接开到汽车门,导致游戏结束)。
  2. 如果主持人先从两只山羊中剔除其中一只,然后才叫参赛者作出选择的话,选中的机会将会是1/2。

3.2 逆向思维

用逆向思维的方式来理解这个选择(以主持人的角度来思考)。无论参赛者开始的选择如何,在被主持人问到是否更换时都选择更换。

  1. 如果参赛者先选中山羊,换之后百分之百赢;
  2. 如果参赛者先选中汽车,换之后百分之百输。

选中山羊的概率是2/3,选中汽车的概率是1/3。所以不管怎样都换,相对最初的赢得汽车仅为1/3的机率来说,转换选择可以增加赢的机会。

一些更简洁的解法:

  1. 最初选羊的概率是2/3,而主持人选羊以后,你变换后选羊的概率就是你最初选车的概率,1/3。
  2. 最初选车的概率是1/3,而主持人选羊以后,你变换后选车的概率就是你最初选羊的概率,2/3。
  3. 最初选车的概率为1/3,车在另外两个门后的概率为2/3,主持人选羊以后,车在最后那张门后的概率还是原来两张门后有车的概率,2/3。

3.3 推理思维

三门问题是多门问题之中最难的情况。如果把三门变成一千个门,假设有车的门是987号,你选了1号门,然后主持人打开了除了你选的1号和有车的门987号之外的998扇门。改选987号门选中的概率是不改选择的999倍,即换门后选中车的概率是百分之九百九十九。

3.4 代码验证

在电脑上运行如下python代码

import randomdef monty_hall():doors = [0, 0, 1]  # 0代表山羊,1代表汽车random.shuffle(doors)  # 随机排列门的顺序choice = random.randint(0, 2)  # 参赛者随机选择一扇门# 主持人打开一扇山羊门for i in range(3):if doors[i] == 0 and i != choice:opened_door = ibreak# 参赛者选择是否换门switch = Trueif switch:for i in range(3):if i != choice and i != opened_door:choice = ibreakreturn doors[choice]  # 返回选择的门的结果(0代表山羊,1代表汽车)# 进行10000次模拟实验
num_trials = 10000
win_count_switch = 0
win_count_stay = 0for _ in range(num_trials):result = monty_hall()if result == 1:win_count_switch += 1else:win_count_stay += 1win_probability_switch = win_count_switch / num_trials
win_probability_stay = win_count_stay / num_trialsprint(f"模拟实验中换门赢得汽车的概率: {win_probability_switch}")
print(f"模拟实验中不换门赢得汽车的概率: {win_probability_stay}")

运行后可知

模拟实验中换门赢得汽车的概率: 0.6698

模拟实验中不换门赢得汽车的概率: 0.3302

这篇关于三门问题(Python运算蒙提霍尔问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675238

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、