三门问题(Python运算蒙提霍尔问题)

2024-02-03 20:04

本文主要是介绍三门问题(Python运算蒙提霍尔问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三门问题

文章目录

  • 三门问题
    • 1.简介
    • 2.问题
    • 3.解答
      • 3.1 概率思维
      • 3.2 逆向思维
      • 3.3 推理思维
      • 3.4 代码验证

1.简介

Monty_open_door

蒙提霍尔问题(英文:Monty Hall problem),亦称为蒙特霍问题山羊问题三门问题,是一个源自博弈论的数学游戏问题,参赛者会看见三扇门,其中一扇门的里面有一辆汽车,选中里面是汽车的那扇门,就可以赢得该辆汽车,另外两扇门里面则都是一只山羊。当参赛者选定了一扇门,主持人会开启另一扇是山羊的门;并问:“要不要换一扇门?”依照玛丽莲·沃斯·莎凡特的见解,参赛者应该换,换门的话,赢得汽车的概率是2/3。这问题亦被叫做蒙提霍尔悖论:因为该问题的答案虽在逻辑上并无矛盾,但十分违反直觉。

蒙提霍尔问题得名于主持人蒙蒂·霍尔,他主持美国的电视游戏节目《Let’s Make a Deal(英语:Let’s Make a Deal)》时,会有这样的游戏,他也确实会先开启另一扇是山羊的门,来吸引观众眼球;但他不会允许参赛者换门。蒙提霍尔问题首次出现,可能是在1889年约瑟夫·贝特朗(英语:Joseph Bertrand)所著的_Calcul des probabilités_一书中。在这本书中,这条问题被称为“贝特朗箱子悖论(英语:Bertrand’s box paradox)”(Bertrand’s Box Paradox)。另一种形式则是三囚问题(Three prisoners problem),原理是一模一样的,1959年出现在马丁·加德纳的《数学游戏》专栏中,其后被改编成各种语言的版本。

2.问题

以下是蒙提霍尔问题的一个著名的叙述,来自Craig F. Whitaker于1990年寄给《展示杂志》(Parade Magazine)玛丽莲·沃斯·莎凡特(Marilyn vos Savant)专栏的信件:

假设你正在参加一个游戏节目,你被要求在三扇门中选择一扇:其中一扇后面有一辆车;其余两扇后面则是山羊。你选择了一道门,假设是一号门,然后知道门后面有什么的主持人,开启了另一扇后面有山羊的门,假设是三号门。他然后问你:“你想选择二号门吗?”变换你的选择对你来说是一种优势吗?

Selvin在随后寄给American Statistician的信件中(1975年8月)首次使用了“蒙提霍尔问题”这个名称。

Mueser和Granberg透过在主持人的行为身上加上明确的限制条件,提出了对这个问题的一种不含糊的陈述:

  1. 参赛者在三扇门中挑选一扇,他并不知道里面有什么。

  2. 主持人知道每扇门后面有什么。

  3. 主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。

  4. 主持人永远都会挑一扇有山羊的门。

    • 如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。

    • 如果参赛者挑了一扇有汽车的门,主持人随机(概率均匀分布)在另外两扇门中挑一扇有山羊的门。

  5. 参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。

变换选择可以增加参赛者的机会吗?

3.解答

玛丽莲·沃斯·莎凡特在1980年代中期因跻身《基尼斯世界纪录》中的智商纪录保持人而成名(结果为185)。当时她的答复在《大观杂志》刊出之后引起举世关注。她的解答彻底违反直觉,并引起众多数学家的质疑。但随后的阐释让质疑者颜面无光。显然,莎凡特的答案是正确的,当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。

3.1 概率思维

Monty_tree_door_math

共有三种可能的情况,全部都有相等的可能性(1/3):

  1. 参赛者挑汽车,主持人挑两头羊的任何一头。变换就会失去汽车。
  2. 参赛者挑A羊,主持人挑B羊。变换将赢得汽车。
  3. 参赛者挑B羊,主持人挑A羊。变换将赢得汽车。

在第一个情况的表述可以分成两种情况:

  • 参赛者挑汽车,主持人挑两头羊的任何一头。变换就会失去汽车。
    • 参赛者挑汽车,主持人挑A羊。变换将失败。
    • 参赛者挑汽车,主持人挑B羊。变换将失败。

在2和3两种情况,参赛者可以通过变换选择而赢得汽车。第一种情况是唯一一种参赛者保持原来选择而赢的情况。因为三种情况中有两种是通过变换选择会赢的,所以变换选择会赢的概率是2/3。

其他情况:

  1. 如果主持人并不知道那扇门后面有汽车,主持人随便打开一扇门(可能主持人会直接开到汽车门,导致游戏结束)。
  2. 如果主持人先从两只山羊中剔除其中一只,然后才叫参赛者作出选择的话,选中的机会将会是1/2。

3.2 逆向思维

用逆向思维的方式来理解这个选择(以主持人的角度来思考)。无论参赛者开始的选择如何,在被主持人问到是否更换时都选择更换。

  1. 如果参赛者先选中山羊,换之后百分之百赢;
  2. 如果参赛者先选中汽车,换之后百分之百输。

选中山羊的概率是2/3,选中汽车的概率是1/3。所以不管怎样都换,相对最初的赢得汽车仅为1/3的机率来说,转换选择可以增加赢的机会。

一些更简洁的解法:

  1. 最初选羊的概率是2/3,而主持人选羊以后,你变换后选羊的概率就是你最初选车的概率,1/3。
  2. 最初选车的概率是1/3,而主持人选羊以后,你变换后选车的概率就是你最初选羊的概率,2/3。
  3. 最初选车的概率为1/3,车在另外两个门后的概率为2/3,主持人选羊以后,车在最后那张门后的概率还是原来两张门后有车的概率,2/3。

3.3 推理思维

三门问题是多门问题之中最难的情况。如果把三门变成一千个门,假设有车的门是987号,你选了1号门,然后主持人打开了除了你选的1号和有车的门987号之外的998扇门。改选987号门选中的概率是不改选择的999倍,即换门后选中车的概率是百分之九百九十九。

3.4 代码验证

在电脑上运行如下python代码

import randomdef monty_hall():doors = [0, 0, 1]  # 0代表山羊,1代表汽车random.shuffle(doors)  # 随机排列门的顺序choice = random.randint(0, 2)  # 参赛者随机选择一扇门# 主持人打开一扇山羊门for i in range(3):if doors[i] == 0 and i != choice:opened_door = ibreak# 参赛者选择是否换门switch = Trueif switch:for i in range(3):if i != choice and i != opened_door:choice = ibreakreturn doors[choice]  # 返回选择的门的结果(0代表山羊,1代表汽车)# 进行10000次模拟实验
num_trials = 10000
win_count_switch = 0
win_count_stay = 0for _ in range(num_trials):result = monty_hall()if result == 1:win_count_switch += 1else:win_count_stay += 1win_probability_switch = win_count_switch / num_trials
win_probability_stay = win_count_stay / num_trialsprint(f"模拟实验中换门赢得汽车的概率: {win_probability_switch}")
print(f"模拟实验中不换门赢得汽车的概率: {win_probability_stay}")

运行后可知

模拟实验中换门赢得汽车的概率: 0.6698

模拟实验中不换门赢得汽车的概率: 0.3302

这篇关于三门问题(Python运算蒙提霍尔问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675238

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息