Fashion MNIST数据集介绍及基于Pytorch下载数据集

2024-02-03 09:04

本文主要是介绍Fashion MNIST数据集介绍及基于Pytorch下载数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Fashion MNIST数据集介绍及基于Pytorch下载数据集


🌵文章目录🌵

  • 🌳引言🌳
  • 🌳Fashion MNIST数据集简介🌳
    • Fashion MNIST数据集的类别说明
    • Fashion MNIST数据集图片示例
  • 🌳基于PyTorch下载Fashion MNIST数据集🌳
  • 🌳使用Fashion MNIST数据集进行图像分类任务🌳
  • 🌳小结🌳
  • 🌳结尾🌳


🌳引言🌳

Fashion MNIST是深度学习和机器学习领域中一个非常流行且实用的数据集。它为初学者和研究者提供了一个挑战性的任务,以磨练他们的图像分类技能。本文将深入探讨Fashion MNIST数据集的背景、目的、使用方法和示例代码,帮助您更好地了解如何利用这个数据集进行图像分类任务。


🌳Fashion MNIST数据集简介🌳

Fashion MNIST是一个包含10个类别的服饰分类数据集,每个类别有7000个28x28像素的灰度图像。与MNIST数据集相比,Fashion MNIST在图像质量和多样性方面具有更高的挑战性,因为它包含了更多的背景和不同的视角。

Fashion MNIST数据集的类别说明


标签说明
0T恤(T-shirt)
1裤子(Trouser)
2套头衫(Pullover)
3连衣裙(Dress)
4外套(Coat)
5凉鞋(Sandal)
6衬衫(Shirt)
7运动鞋(Sneaker)
8包(Bag)
9靴子(Ankle boot)

Fashion MNIST数据集图片示例


在这里插入图片描述

图1 数据集示例


🌳基于PyTorch下载Fashion MNIST数据集🌳

在开始使用Fashion MNIST数据集之前,您需要先将其下载到本地计算机上。以下是使用Python和Pytorch库下载数据集的步骤:

  1. 确保已经安装了Python和Pytorch。您可以从Pytorch官网下载并安装最新版本的Pytorch。
  2. 导入所需的库:
import torch
from torchvision import datasets, transforms
  1. 下载训练数据集:
train_data = torchvision.datasets.FashionMNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)

这将在当前目录下创建一个名为“data”的文件夹,并将训练数据集下载到其中。如果您已经拥有数据集,并且想要跳过下载过程,请将download参数设置为False

  1. 下载测试数据集:
test_data = torchvision.datasets.FashionMNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True)

同样,这将在“data”文件夹中提供测试数据集。

  1. 现在您已经成功下载了Fashion MNIST数据集,您可以使用Pytorch的数据加载器(DataLoader)来轻松加载数据。例如,以下代码将创建一个训练数据加载器:
from torch.utils.data import DataLoadertrain_loader = DataLoader(train_data, batch_size=32, shuffle=True)

这里,我们将批量大小设置为32,并启用了随机打乱功能。您可以根据需要调整这些参数。类似地,您可以为测试数据集创建一个加载器:

test_loader = DataLoader(test_data, batch_size=32, shuffle=False)

🌳使用Fashion MNIST数据集进行图像分类任务🌳

一旦您下载并准备好了数据集,就可以开始构建和训练图像分类模型了。以下是一个使用PyTorch构建简单卷积神经网络(CNN)进行图像分类的示例代码:

  1. 导入所需的库和模块:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import train_test_split
  1. 划分训练和测试数据集:

首先,我们需要将Fashion MNIST数据集划分为训练集和测试集。以下是一个简单的示例代码,用于将数据分为训练集和测试集:

# 将数据转换为Tensor格式并进行归一化处理(将像素值缩放到0-1之间)
transform = transforms.ToTensor()
train_data = TensorDataset(torch.tensor(train_data.data), train_data.targets) # targets表示图像对应的类别标签(0-9)
test_data = TensorDataset(torch.tensor(test_data.data), test_data.targets) # targets表示图像对应的类别标签(0-9)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True) # 创建训练数据加载器,设置批量大小为32并【启用】随机打乱功能
test_loader = DataLoader(test_data, batch_size=32, shuffle=False) # 创建测试数据加载器,设置批量大小为32并【禁用】随机打乱功能3. 定义模型结构:
现在,我们可以定义一个简单的卷积神经网络(CNN)模型,用于图像分类任务。以下是一个示例代码,展示了如何使用PyTorch构建一个包含两个卷积层、一个全连接层的CNN模型:```python
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)self.fc1 = nn.Linear(64 * 7 * 7, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = F.relu(self.conv1(x))x = F.relu(self.conv2(x))x = x.view(-1, 64 * 7 * 7) # 将卷积后的特征图展平,以便输入全连接层x = F.relu(self.fc1(x))x = self.fc2(x)return F.log_softmax(x, dim=1) # 使用log_softmax激活函数进行分类概率计算
  1. 训练模型:

接下来,我们将使用训练数据集对模型进行训练。以下是一个示例代码,展示了如何定义损失函数和优化器,以及如何训练模型:

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 检查是否有可用的GPU,并定义设备(CPU或GPU)
model = SimpleCNN().to(device) # 将模型移动到设备上(CPU或GPU)
criterion = nn.CrossEntropyLoss() # 定义损失函数为交叉熵损失函数
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # 定义优化器为随机梯度下降(SGD)优化器,设置学习率为0.001,动量为0.9# 训练模型
num_epochs = 10 # 设置训练轮数为10轮
for epoch in range(num_epochs):model.train() # 设置模型为训练模式running_loss = 0.0for i, data in enumerate(train_loader): # 使用训练数据加载器逐批获取数据和标签inputs, labels = data[0].to(device), data[1].to(device) # 将数据和标签移动到设备上(CPU或GPU)optimizer.zero_grad() # 将梯度清零outputs = model(inputs) # 前向传播,获取预测输出loss = criterion(outputs, labels) # 计算损失值loss.backward() # 反向传播,计算梯度值optimizer.step() # 更新权重参数running_loss += loss.item() # 累加损失值print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(train_loader))) # 输出当前轮次的平均损失值
  1. 测试模型:

经过训练后,我们需要使用测试数据集评估模型的性能。以下是一个示例代码,展示了如何使用测试数据加载器评估模型:

model.eval() # 设置模型为评估模式,关闭dropout和batch normalization等在训练模式下的特殊操作
correct = 0
total = 0
with torch.no_grad(): # 不需要计算梯度,以提高评估速度for data in test_loader: # 使用测试数据加载器逐批获取数据和标签images, labels = data[0].to(device), data[1].to(device) # 将数据和标签移动到设备上(CPU或GPU)outputs = model(images) # 前向传播,获取预测输出_, predicted = torch.max(outputs.data, 1) # 获取最大概率对应的类别标签作为预测结果total += labels.size(0) # 统计样本总数correct += (predicted == labels).sum().item() # 统计正确分类的样本数量print('Accuracy of the network on the test images: %d %%' % (100 * correct / total)) # 输出模型在测试数据集上的准确率

🌳小结🌳

Fashion MNIST是一个流行的机器学习数据集,主要用于服饰分类任务。它包含10个类别的7000个28x28像素的灰度图像,挑战性较高,因为涉及更多背景和视角。通过PyTorch,可以轻松下载并使用此数据集。一旦数据集准备好,可以使用CNN等模型进行图像分类。本文详细介绍了Fashion MNIST的背景、目的、使用方法和示例代码,为初学者和研究者提供了实用的指导和资源。


🌳结尾🌳

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见💬
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果博文给您带来了些许帮助,那么,希望能为我们点个免费的赞👍👍/收藏👇👇您的支持和鼓励👏👏是我们持续创作✍️✍️的动力
我们会持续努力创作✍️✍️,并不断优化博文质量👨‍💻👨‍💻,只为给带来更佳的阅读体验。
如果有任何疑问或建议,请随时在评论区留言,我们将竭诚为你解答~
愿我们共同成长🌱🌳,共享智慧的果实🍎🍏!


万分感谢🙏🙏点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~

这篇关于Fashion MNIST数据集介绍及基于Pytorch下载数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/673638

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很