Linux下使用ZMQ实践之监控事件

2024-02-02 21:38

本文主要是介绍Linux下使用ZMQ实践之监控事件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 前言

继续《Linux下使用ZMQ实践“生产者-消费者”模型》 文章之后进一步思考:
ZeroMQ通过隐藏了基础的socket操作,达到调用简明易懂的层次;
那么,如果某些场景下,又需要考虑到连接状态的维护,应该如何操作?
ZeroMQ给出的解决方案就是zmq_socket_monitor

2. 相关知识

支持监控的事件:

事件描述
ZMQ_EVENT_CONNECTEDsocket已被成功连接
ZMQ_EVENT_CONNECT_DELAYED连接动作被挂起
ZMQ_EVENT_CONNECT_RETRIED连接失败,正在重试
ZMQ_EVENT_LISTENING监听成功
ZMQ_EVENT_BIND_FAILED绑定失败
ZMQ_EVENT_ACCEPTED接受新连接
ZMQ_EVENT_ACCEPT_FAILED接受新连接失败
ZMQ_EVENT_CLOSEDsocket关闭(主动关闭)
ZMQ_EVENT_CLOSE_FAILEDsocket关闭失败
ZMQ_EVENT_DISCONNECTED连接意外关闭(被关闭)
ZMQ_EVENT_MONITOR_STOPPED监控的socket消亡

使用思路:将要监听的sock跟monitor关联,然后创建一个额外的ZMQ_PAIR,通过pair来获取sock上的事件。

3.场景举例

根据之前的“生产者-消费者”模型的一个改进:

  • 已知固定的消费者个数,如4个;
  • 生产者等待4个消费者全部启动后,才开始发送消息;
  • 生产者发送退出消息,等待消费者断开连接后才最后退出;

在之前一对多的 Push-Pull 模式下,如果没有消费者连接,则生产者数据发送会一直阻塞,但如果有至少一个连接成功,则生产者进入发送数据阶段;在改进场景中,需求所有消费者就绪后,生产者才正式开始发送数据,达到一个理想的均衡状态。

这样,我们就依赖monitor机制的实现,监听消费者的Push套件,额外增加一个监听器monitor:

#define ADDR "tcp://127.0.0.1:555"
#define MONITOR "inproc://monitor-server"...void *sock = zmq_socket(ctx, ZMQ_PUSH);void *mon  = zmq_socket(ctx, ZMQ_PAIR);...zmq_bind(sock, ADDR);zmq_socket_monitor(sock, MONITOR, ZMQ_EVENT_ALL);zmq_connect(mon, MONITOR);...

下来,我们通过monitor等待4个消费者的连接事件,成功后才发送数据;
发送数据完成后,我们通过发送“Quit”报文来通知消费者退出进程;
完整的生产者代码如下:

void test_producer(void *ctx, int times)
{int ix = 0, cnt = 0, id = 0, event = 0;char request[1024];void *sock = zmq_socket(ctx, ZMQ_PUSH);void *mon  = zmq_socket(ctx, ZMQ_PAIR);s_set_id_num(sock, id);zmq_bind(sock, ADDR);zmq_socket_monitor(sock, MONITOR, ZMQ_EVENT_ALL);zmq_connect(mon, MONITOR);LOGN("Producer %d setup\n", id);for (cnt = 0; cnt < 4;) {event = get_monitor_event(mon, NULL, NULL);if (event == ZMQ_EVENT_ACCEPTED) {LOGN("Producer accepted\n");cnt++;}}LOGN("Producer %d start\n", id);for (ix = 0; ix < times; ix++) {snprintf(request, sizeof(request), "Data-%03d-%03d", id, ix);s_send(sock, request);LOGN("Producer %d send: %s\n", id, request);usleep(100 * 1000);}for (cnt = 0; cnt < 4;) {s_send(sock, "Quit"); // 通知一个消费者,退出一个消费者event = get_monitor_event(mon, NULL, NULL);if (event == ZMQ_EVENT_DISCONNECTED) {cnt++;}}LOGN("Producer %d stop\n", id);zmq_close(sock);
}

获取监听事件的接口为,get_monitor_event,该函数从ZeroMQ帮助手册摘抄下来:

static int get_monitor_event (void *monitor, int *value, char **address)
{   // First frame in message contains event number and valuezmq_msg_t msg;zmq_msg_init (&msg);if (zmq_msg_recv (&msg, monitor, 0) == -1)return -1; // Interrupted, presumablyassert (zmq_msg_more (&msg));uint8_t *data = (uint8_t *) zmq_msg_data (&msg);uint16_t event = *(uint16_t *) (data);if (value) *value = *(uint32_t *) (data + 2);// Second frame in message contains event addresszmq_msg_init (&msg);if (zmq_msg_recv (&msg, monitor, 0) == -1)return -1; // Interrupted, presumablyassert (!zmq_msg_more (&msg));if (address) {uint8_t *data = (uint8_t *) zmq_msg_data (&msg);size_t size = zmq_msg_size (&msg); *address = (char *) malloc (size + 1);memcpy (*address, data, size);(*address)[size] = 0;}return event;
}

然后消费者的实现,跟先前的例子差不多,就多了一个退出的判断:

int test_consumer(void *ctx, int id)
{int cnt = 0;char request[1024];void *sock = zmq_socket(ctx, ZMQ_PULL);s_set_id_num(sock, id);zmq_connect(sock, ADDR);LOGN("Consumer %d start\n", id);while (++cnt) {s_recv(sock, request);LOGN("Consumer %d recv: %s\n", id, request);usleep(300 * 1000);if (strcmp(request, "Quit") == 0) {break;}}LOGN("Consumer %d stop\n", id);zmq_close(sock);
}

最后,main函数功能,主要为fork,主进程做生产者,子进程做消费者;
同时,为了方便起见,省略了waitpid回收子进程的动作;


int main(int argc, char *argv[])
{int ix = 0;void *ctx = zmq_ctx_new();srandom(time(NULL));/* 1x producter vs 4x consumer */for (ix= 1; ix <= 4; ix++) {pid_t pid = fork();if (pid == 0) {test_consumer(ctx, ix);goto out;}}test_producer(ctx, atoi(argv[1]));// TODO waitpid
out:zmq_ctx_destroy(ctx);exit(EXIT_SUCCESS);
}

实际运行情况如下:

[ 1561228921.433 ]: Consumer 1 start
[ 1561228921.433 ]: Consumer 2 start
[ 1561228921.434 ]: Consumer 4 start
[ 1561228921.434 ]: Consumer 3 start
[ 1561228921.434 ]: Producer 0 setup
[ 1561228921.435 ]: Producer accepted
[ 1561228921.496 ]: Producer accepted
[ 1561228921.572 ]: Producer accepted
[ 1561228921.572 ]: Producer accepted
[ 1561228921.572 ]: Producer 0 start
[ 1561228921.572 ]: Producer 0 send: Data-000-000
[ 1561228921.574 ]: Consumer 3 recv: Data-000-000
[ 1561228921.673 ]: Producer 0 send: Data-000-001
[ 1561228921.774 ]: Producer 0 send: Data-000-002
[ 1561228921.775 ]: Consumer 2 recv: Data-000-002
[ 1561228921.876 ]: Producer 0 send: Data-000-003
[ 1561228921.877 ]: Consumer 1 recv: Data-000-003
[ 1561228921.978 ]: Producer 0 send: Data-000-004
[ 1561228921.978 ]: Consumer 4 recv: Data-000-004
[ 1561228922.079 ]: Producer 0 send: Data-000-005
[ 1561228922.081 ]: Consumer 3 recv: Data-000-005
[ 1561228922.183 ]: Producer 0 send: Data-000-006
[ 1561228922.284 ]: Producer 0 send: Data-000-007
[ 1561228922.285 ]: Consumer 2 recv: Data-000-007
[ 1561228922.386 ]: Producer 0 send: Data-000-008
[ 1561228922.387 ]: Consumer 1 recv: Data-000-008
[ 1561228922.488 ]: Producer 0 send: Data-000-009
[ 1561228922.488 ]: Consumer 4 recv: Data-000-009
[ 1561228922.590 ]: Consumer 3 recv: Quit
[ 1561228922.892 ]: Consumer 3 stop
[ 1561228922.894 ]: Consumer 2 recv: Quit
[ 1561228923.195 ]: Consumer 2 stop
[ 1561228923.196 ]: Consumer 1 recv: Quit
[ 1561228923.497 ]: Consumer 1 stop
[ 1561228923.499 ]: Consumer 4 recv: Quit
[ 1561228923.800 ]: Consumer 4 stop
[ 1561228923.802 ]: Producer 0 stop

可以看出,程序第一阶段,启动进程;第二阶段,发送数据,负载均衡;第三阶段,回收资源。

4 结论

ZMQ监控事件的方法,提供了一种可选的扩展场景支持,实际使用可以放主线程处理,也可以放独立的子线程处理。

这篇关于Linux下使用ZMQ实践之监控事件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/672046

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1