行人重识别ReID常用Loss损失函数

2024-02-02 19:58

本文主要是介绍行人重识别ReID常用Loss损失函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

行人重识别ReID

算法的提高主要体现在损失函数的设计上,损失函数会对整个网络的优化有着导向性的作用。

ReID任务在大多数情况下都是多任务学习,主流是分为两个任务,一个是构建id loss,通过分类损失,来学习对应不同id的损失,另一种是triple loss为主的通过特征向量直接构建的损失,学习类内的相似性和类内的区分性,让不同的特征向量直接的区分度更高,让相同的特征向量更加趋同。

在ReID中常见的loss有Identity Loss、Verification Loss、Triplet loss

Base line Softmax loss
各种延伸的算法 Triplet loss, center loss

###########
id loss 的目的是对特定领域的信息进行建模,以便在每个模式中区分不同的人。
contast loss弥补了两种异质模式之间的差距,增强了学习表征的模式差异。


1、Cross-entropy loss
交叉熵是常见的分类损失,用来描述了两个概率分布之间的距离,当交叉熵越小说明二者之间越接近。

1)普通交叉熵损失
y’是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。

2)label smooth
当然在ReID的过程中还是存在很多的负样本,类别越多负样本的数量越大,为了做好负样本的损失构建而不是忽略负样本,可以在交叉熵中引入label smooth的操作,与传统交叉熵不同,不强制将类别考虑为0/1,而是有一定概率计算,具体公式如下:
目的是由于一些id的图片量太少了,防止过度拟合训练集。这个策略也是提高了模型的泛化能力的,防止对训练集中的类别过度拟合,根据查阅资料这个也是一个好的策略。

(1)对比损失(Contrastive loss)
对比损失用于训练孪生网络(Siamese network)。孪生网络的输入为一对(两张)图片,其实就是损失函数的计算,还是一个网络。标签相同y=1,不同为0,对比损失函数写作:

(2)三元组损失(Triplet loss)
三元组损失是一种被广泛应用的度量学习损失,之后的大量度量学习方法也是基于三元组损失演变而来。顾名思义,三元组损失需要三张输入图片。和对比损失不同,一个输入的三元组(Triplet)包括一对正样本对和一对负样本对。三张图片分别命名为固定图片(Anchor) a ,正样本图片(Positive)p和负样本图片(Negative) n 。图片 a 和图片 p 为一对正样本对,图片 a 和图片 n 为一对负样本对。则三元组损失表示为:

Triplet loss属于Metric Learning, 相比起softmax, 它可以方便地训练大规模数据集,不受显存的限制。缺点是过于关注局部,导致难以训练且收敛时间长
这里提一下Metric Learning的概念,它是根据不同的任务来自主学习出针对某个特定任务的度量距离函数。通过计算两张图片之间的相似度,使得输入图片被归入到相似度大的图片类别中去。通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。

后来有改进版认为原版的Triplet loss只考虑正负样本对之间的相对距离,而并没有考虑正样本对之间的绝对距离,为此提出改进三元组损失(Improved triplet loss):
保证网络不仅能够在特征空间把正负样本推开,也能保证正样本对之间的距离很近。

1、 Softmax loss
这就是softmax loss函数,xxxxxxxxx表示全连接层的输出。在计算Loss下降的过程中,我们让{W^T_{j}x_i+b_{j}} 的比重变大,从而使得log() 括号内的数更变大来更接近1,就会 log(1) = 0,整个loss就会下降。
这种方式只考虑了能否正确分类,却没有考虑类间距离。

softmax是最常见的人脸识别函数,其原理是去掉最后的分类层,作为解特征网络导出特征向量用于人脸识别。softmax训练的时候收敛得很快,但是精确度一般达到0.9左右就不会再上升了,一方面是作为分类网络,softmax不能像metric learning一样显式的优化类间和类内距离,所以性能不会特别好,另外,人脸识别的关键在于得到泛化能力强的feature,与分类能力并不是完全等价的。

a

2、center loss

可以看到,在separable features中,类内距离有的时候甚至是比内间距离要大的,这也是上问题到softmax效果不好的原因之一,它具备分类能力但是不具备metric learning的特性,没法压缩同一类别。在这个基础上,center loss被提出来,用于压缩同一类别。center loss的核心是,为每一个类别提供一个类别中心,最小化每个样本与该中心的距离:

https://blog.csdn.net/u012505617/article/details/89355690

这篇关于行人重识别ReID常用Loss损失函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/671799

相关文章

Spring Boot 常用注解整理(最全收藏版)

《SpringBoot常用注解整理(最全收藏版)》本文系统整理了常用的Spring/SpringBoot注解,按照功能分类进行介绍,每个注解都会涵盖其含义、提供来源、应用场景以及代码示例,帮助开发... 目录Spring & Spring Boot 常用注解整理一、Spring Boot 核心注解二、Spr

Java中的内部类和常用类用法解读

《Java中的内部类和常用类用法解读》:本文主要介绍Java中的内部类和常用类用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录内部类和常用类内部类成员内部类静态内部类局部内部类匿名内部类常用类Object类包装类String类StringBuffer和Stri

MySQL连接池(Pool)常用方法详解

《MySQL连接池(Pool)常用方法详解》本文详细介绍了MySQL连接池的常用方法,包括创建连接池、核心方法连接对象的方法、连接池管理方法以及事务处理,同时,还提供了最佳实践和性能提示,帮助开发者构... 目录mysql 连接池 (Pool) 常用方法详解1. 创建连接池2. 核心方法2.1 pool.q

Spring Boot 常用注解详解与使用最佳实践建议

《SpringBoot常用注解详解与使用最佳实践建议》:本文主要介绍SpringBoot常用注解详解与使用最佳实践建议,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、核心启动注解1. @SpringBootApplication2. @EnableAutoConfi

SQL常用操作精华之复制表、跨库查询、删除重复数据

《SQL常用操作精华之复制表、跨库查询、删除重复数据》:本文主要介绍SQL常用操作精华之复制表、跨库查询、删除重复数据,这些SQL操作涵盖了数据库开发中最常用的技术点,包括表操作、数据查询、数据管... 目录SQL常用操作精华总结表结构与数据操作高级查询技巧SQL常用操作精华总结表结构与数据操作复制表结

JavaScript时间戳与时间的转化常用方法

《JavaScript时间戳与时间的转化常用方法》在JavaScript中,时间戳(Timestamp)通常指Unix时间戳,即从1970年1月1日00:00:00UTC到某个时间点经过的毫秒数,下面... 目录1. 获取当前时间戳2. 时间戳 → 时间对象3. 时间戳php → 格式化字符串4. 时间字符

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Kotlin运算符重载函数及作用场景

《Kotlin运算符重载函数及作用场景》在Kotlin里,运算符重载函数允许为自定义类型重新定义现有的运算符(如+-…)行为,从而让自定义类型能像内置类型那样使用运算符,本文给大家介绍Kotlin运算... 目录基本语法作用场景类对象数据类型接口注意事项在 Kotlin 里,运算符重载函数允许为自定义类型重

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句