代码随想录算法训练营Day45|70. 爬楼梯(进阶版)、322. 零钱兑换、279.完全平方数

本文主要是介绍代码随想录算法训练营Day45|70. 爬楼梯(进阶版)、322. 零钱兑换、279.完全平方数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

70. 爬楼梯(进阶版)

前言

思路

算法实现

 322. 零钱兑换

 前言

思路

 279.完全平方数

前言

思路

算法实现 

总结


70. 爬楼梯(进阶版)

题目链接

文章链接

前言

        本题是70. 爬楼梯问题的进阶版,每次可以跳跃的台阶数之多为m阶,可以用完全背包的方法解决。

思路

        利用动规五部曲进行分析:

1.确定dp数组及其下标含义:

        dp[j]:爬上第j阶楼梯有dp[j]种不同的方法。

2.确定递推公式:

        本题依旧是求装满背包有几种方法类型的题目,依然是递推公式dp[j] += dp[j - nums[i]],本题中为dp[j] += dp[j - i];

3.dp数组初始化:

        既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

        下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果。

4.确定遍历顺序:

        本题是一道排列问题,因为先跳两步后跳一步,和先跳一步再跳两步是有区别的。因此遍历顺序是先遍历背包,再遍历物品。

5.打印dp数组:

        省略。

算法实现

#include <bits/stdc++.h>
using namespace std;int main() {int n, m;cin >> n >> m;vector <int> dp (n + 1, 0);dp[0] = 1;for (int j = 1; j <= n; j++) {for (int i = 1; i <= m; i++){if (j >= i) dp[j] += dp[j - i];}}cout << dp[n] << endl;
}

 322. 零钱兑换

题目链接

文章链接

 前言

        本题与零钱兑换II有些类似,零钱兑换II是求凑成总金额有多少种不同的方法,而本题是凑成总金额最少的硬币个数。

思路

        题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。利用动规五部曲进行分析:

1.确定dp数组及其下标的含义:

        dp[j]:凑层总金额j所需要的最少硬币个数为dp[j];

2.确定递推公式:

        凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j],所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

        递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

3.初始化dp数组:

        首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;对于其他下标,由于递推公式求得是最小值,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。所以下标非0的元素都是应该是最大值(INT_MAX);

4.确定遍历顺序:

        本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。所以本题并不强调集合是组合还是排列。

        因此对于求装满背包的最多物品个数和最少物品个数,不需要考虑组合排列问题,即先遍历背包和先遍历物品都可以。

5.打印dp数组:

        以输入:coins = [1, 2, 5], amount = 5为例,最终得到的dp数组如下:

算法实现

class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX);dp[0] = 0;for (int i = 0; i < coins.size(); i++) {for (int j = coins[i]; j <= amount ; j++) {if (dp[j - coins[i]] != INT_MAX) {dp[j] = min(dp[j - coins[i]] + 1, dp[j]);}}}if (dp[amount] == INT_MAX) return -1;return dp[amount];}
};

 279.完全平方数

题目链接

文章链接

前言

        本题也是一道完全背包问题,转换一下题目语言就是:要装满一个容量为n的背包所使用的最少物品个数是多少?

思路

        本题的整体思路与上一题零钱兑换类似,都是求装满背包的最少物品个数,唯一的不同就是这次没有给物品的集合。采用动规五部曲进行分析:

1.确定dp数组及其下标含义:

        dp[j]:要装满容量为j的背包最少的物品个数为dp[j];

2.确定递推公式:

        dp[j] = min(dp[j - i] + 1, dp[j]);

3.初始化dp数组:

        dp[0]表示和为0的完全平方数的最小数量,那么dp[0]一定是0。其余下标依旧初始化为最大值INT_MAX;

4.确定遍历顺序:

        求装满背包的最小数量,不用考虑组合排列问题,遍历顺序没有要求;

5.打印dp数组:

        已输入n为5例,dp状态图如下:

算法实现 

class Solution {
public:int numSquares(int n) {vector<int> dp (n + 1, INT_MAX);dp[0] = 0;for (int i = 1; i * i <= n; i++) {for (int j = i * i; j <= n; j++) {dp[j] = min(dp[j - i * i] + 1, dp[j]);}}return dp[n];}
};

总结

        今天学会了背包问题之处理装满背包最少物品的方法,对于背包问题的处理感觉有点感觉了。

这篇关于代码随想录算法训练营Day45|70. 爬楼梯(进阶版)、322. 零钱兑换、279.完全平方数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/671158

相关文章

Python跨文件实例化、跨文件调用及导入库示例代码

《Python跨文件实例化、跨文件调用及导入库示例代码》在Python开发过程中,经常会遇到需要在一个工程中调用另一个工程的Python文件的情况,:本文主要介绍Python跨文件实例化、跨文件调... 目录1. 核心对比表格(完整汇总)1.1 自定义模块跨文件调用汇总表1.2 第三方库使用汇总表1.3 导

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD

javaSE类和对象进阶用法举例详解

《javaSE类和对象进阶用法举例详解》JavaSE的面向对象编程是软件开发中的基石,它通过类和对象的概念,实现了代码的模块化、可复用性和灵活性,:本文主要介绍javaSE类和对象进阶用法的相关资... 目录前言一、封装1.访问限定符2.包2.1包的概念2.2导入包2.3自定义包2.4常见的包二、stati

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习