2024年美国大学生数学建模C题思路分析 - 网球的动量

2024-02-02 13:20

本文主要是介绍2024年美国大学生数学建模C题思路分析 - 网球的动量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 1 赛题
问题C:网球的动量
在这里插入图片描述
在2023年温布尔登绅士队的决赛中,20岁的西班牙新星卡洛斯·阿尔卡拉兹击败了36岁的诺瓦克·德约科维奇。这是德约科维奇自2013年以来首次在温布尔登公开赛失利,并结束了他在大满贯赛事中历史上最伟大的球员之一的非凡表现。

这场比赛本身就是一场非凡的战斗。[1]德约科维奇似乎注定要轻松获胜,他以6-1控制了第一盘(7场比赛赢6场)。然而,第二盘比赛很紧张,最终阿尔卡雷兹以7-6的比分获胜。第三盘与第一盘相反,阿尔卡拉兹以6-1轻松获胜。在第四盘开始时,年轻的西班牙人似乎完全控制了局面,但不知怎么的,比赛又改变了方向,德约科维奇完全控制了局面,以6-3赢得了这一盘。第五盘也是最后一盘开始时,德约科维奇从第四盘领先,但方向又发生了变化,阿尔卡拉兹控制了局面,以6-4获胜。这场比赛的数据在所提供的“2023-温布尔登1701”的数据集“match_id”中。当德约科维奇使用“set_no”列等于1时,你可以看到第一回合的所有分数。令人难以置信的波动,有时是很多分数,甚至是比赛,发生在那些似乎有优势的球员,通常被归因于“势头”。

字典中对动量的一种定义是“通过运动或一系列事件获得的力量或力”。[2]在体育运动中,一个团队或球员可能会觉得他们在比赛/比赛中有动力,或“力量/力量”,但很难衡量这种现象。此外,如果比赛中各种事件如何创造或改变势头,这并不明显。

提供2023年温布尔登男子比赛前两轮后的每一分数据。您可以自行选择包含额外的玩家信息或其他数据,但您必须完全记录这些来源。将数据用于:
开发一个模型,捕捉得分发生时的比赛流程,并将其应用于一个或多个比赛。你的模型应该确定哪个球员在比赛的特定时间表现更好,以及他们的表现有多好。提供一个基于模型的可视化功能来描述匹配流程。注:在网球比赛中,发球者赢得得分的可能性要高得多。您可能希望以某种方式将其考虑到您的模型中。
网球教练怀疑“势头”是否在比赛中起着任何作用。相反,他假设一个球员的波动和成功的跑动是随机的。使用您的模型/度量来评估此索赔。

教练们很想知道是否有指标可以帮助决定何时比赛的流程将从偏爱一个球员转向另一个球员。
o利用至少一场比赛提供的数据,建立一个模型来预测比赛中的这些波动。哪
些因素似乎是最相关的(如果有的话)?
o考虑到过去比赛“势头”波动的差异,你如何建议一名球员与另一名球员进
行新的比赛?

在一个或多个其他匹配项上测试您开发的模型。你对比赛中的波动的预测效果如何?

如果模型有时表现不佳,您能否确定可能需要包含在未来模型中的任何因素?

你的模式对其他比赛(如女子比赛)、锦标赛、球场表面和乒乓球等其他运动项目有多普遍。

制作一份不超过25页的报告,包括你的发现,包括一份两页的备忘录,总结你的结果
,建议教练们了解“势头”的作用,以及如何准备球员对影响网球比赛流程的事件
做出反应。

2 解题思路

🥇 最新思路更新(看最新发布的文章即可):
https://blog.csdn.net/dc_sinor?type=blog

3 最新思路更新

🥇 最新思路更新(看最新发布的文章即可):
https://blog.csdn.net/dc_sinor?type=blog

这篇关于2024年美国大学生数学建模C题思路分析 - 网球的动量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670832

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.