强化学习原理python篇08——actor-critic

2024-02-02 13:20

本文主要是介绍强化学习原理python篇08——actor-critic,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习原理python篇08——actor-critic

  • 前置知识
    • TD Error
    • REINFORCE
    • QAC
    • Advantage actor-critic (A2C)
  • torch实现步骤
    • 第一步
    • 第二步
    • 第三步
    • 训练
    • 结果
  • Ref

本章全篇参考赵世钰老师的教材 Mathmatical-Foundation-of-Reinforcement-Learning Actor-Critic Methods 章节,请各位结合阅读,本合集只专注于数学概念的代码实现。

前置知识

TD Error

如果用 v ^ ( s , w ) \hat v(s,w) v^(s,w)代表状态值函数,则TD Error表示为
r t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) r_{t+1}+\gamma \hat v(s_{t+1},w) -\hat v(s_{t},w) rt+1+γv^(st+1,w)v^(st,w)

令损失函数
J w = E [ v ( s t ) − v ^ ( s t , w ) ] 2 J_w = E[ v(s_{t}) -\hat v(s_{t},w)]^2 Jw=E[v(st)v^(st,w)]2

则利用梯度下降法最小化 J θ J_\theta Jθ
w k + 1 = w k − α ∇ w J ( w k ) = w k − α [ − 2 E ( [ r t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) ] ) ] ∇ w v ^ ( s t , w ) ) \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w J(w_k)\\ =& w_k -\alpha[-2E([r_{t+1}+\gamma \hat v(s_{t+1},w) -\hat v(s_{t},w)])]\nabla_w \hat v(s_{t},w)) \end{align*} wk+1==wkαwJ(wk)wkα[2E([rt+1+γv^(st+1,w)v^(st,w)])]wv^(st,w))

用随机梯度来估算,则最小化 J θ J_\theta Jθ
w k + 1 = w k − α ∇ w J ( w k ) = w k + α [ r t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) ] ∇ w v ^ ( s t , w ) ) = w k + α [ v ( s t ) − v ^ ( s t , w ) ] ∇ w v ^ ( s t , w ) ) \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w J(w_k)\\ =& w_k +\alpha[r_{t+1}+\gamma \hat v(s_{t+1},w) -\hat v(s_{t},w)]\nabla_w \hat v(s_{t},w))\\ =& w_k +\alpha[ v(s_{t}) -\hat v(s_{t},w)]\nabla_w \hat v(s_{t},w))\\ \end{align*} wk+1===wkαwJ(wk)wk+α[rt+1+γv^(st+1,w)v^(st,w)]wv^(st,w))wk+α[v(st)v^(st,w)]wv^(st,w))

对于q—value来说,
w k + 1 = w k − α ∇ w J ( w k ) = w k + α [ r t + 1 + γ q ^ ( s t + 1 , a t + 1 , w ) − q ^ ( s t , a t , w ) ] ∇ w q ^ ( s t , a t , w ) ) \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w J(w_k)\\ =& w_k +\alpha[r_{t+1}+\gamma \hat q(s_{t+1}, a_{t+1},w) -\hat q(s_{t}, a_{t},w)]\nabla_w \hat q(s_{t},a_{t},w))\\ \end{align*} wk+1==wkαwJ(wk)wk+α[rt+1+γq^(st+1,at+1,w)q^(st,at,w)]wq^(st,at,w))

REINFORCE

参考上一节

θ t + 1 = θ t + ∇ θ J ( θ t ) = θ t + ∇ θ E S − d , a − π ( S , Θ ) [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + \nabla _{\theta}J(θ_t)\\=& θ_{t} + \nabla _{\theta}E_{S-d,a-\pi(S,\Theta)}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1==θt+θJ(θt)θt+θESd,aπ(S,Θ)[q(s,a)θl(as,θ)]
一般来说, ∇ θ l n π ( a ∣ s , θ ) \nabla _{\theta}ln\pi(a|s,\theta) θl(as,θ)是未知的,可以用随机梯度法来估计,则
θ t + 1 = θ t + ∇ θ J ( θ t ) = θ t + ∇ θ [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + \nabla _{\theta}J(θ_t)\\=& θ_{t} + \nabla _{\theta}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1==θt+θJ(θt)θt+θ[q(s,a)θl(as,θ)]

QAC

The simplest actor-critic algorithm

  • actor:更新策略

    我们采用reinforce的方法来更新策略函数 π \pi π θ t + 1 = θ t + ∇ θ [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + \nabla _{\theta}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1=θt+θ[q(s,a)θl(as,θ)]

  • critic:更新值

    我们采用优化td-error的方法来更新行动值 q q q
    w k + 1 = w k + α [ r t + 1 + γ q ^ ( s t + 1 , a t + 1 , w ) − q ^ ( s t , a t , w ) ] ∇ w q ^ ( s t , a t , w ) ) \begin{align*} w_{k+1} =& w_k +\alpha[r_{t+1}+\gamma \hat q(s_{t+1}, a_{t+1},w) -\hat q(s_{t}, a_{t},w)]\nabla_w \hat q(s_{t},a_{t},w)) \end{align*} wk+1=wk+α[rt+1+γq^(st+1,at+1,w)q^(st,at,w)]wq^(st,at,w))

Advantage actor-critic (A2C)

减小方差的下一步是使基线与状态相关(这是一个好主意,因为不同的状态可能具有非常不同的基线)。确实,要决定某个特定动作在某种状态下的适用性,我们会使用该动作的折扣总奖励。但是,总奖励本身可以表示为状态的价值加上动作的优势值:Q(s,a)=V(s)+A(s,a)(参见DuelingDQN)。

知道每个状态的价值(至少有一个近似值)后,我们就可以用它来计算策略梯度并更新策略网络,以增加具有良好优势值的动作的执行概率,并减少具有劣势优势值的动作的执行概率。策略网络(返回动作的概率分布)被称为行动者(actor),因为它会告诉我们该做什么。另一个网络称为评论家(critic),因为它能使我们了解自己的动作有多好。这种改进有一个众所周知的名称,即advantage actorcritic方法,通常被简称为A2C。
E S − d , a − π ( S , Θ ) [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] = E S − d , a − π ( S , Θ ) [ ∇ θ l n π ( a ∣ s , θ ) [ q ( s , a ) − v ( s ) ] ] E_{S-d,a-\pi(S,\Theta)}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)]=E_{S-d,a-\pi(S,\Theta)}[\nabla _{\theta}ln\pi(a|s,\theta)[q(s,a) -v(s)]] ESd,aπ(S,Θ)[q(s,a)θl(as,θ)]=ESd,aπ(S,Θ)[θl(as,θ)[q(s,a)v(s)]]

  • Advantage(TD error)

    δ t = r t + 1 + γ v ( s t + 1 ; w t ) − v ( s t ; w t ) \delta_t =r_{t+1}+\gamma v(s_{t+1};w_t)- v(s_t;w_t) δt=rt+1+γv(st+1;wt)v(st;wt)

  • actor:更新策略

    我们采用reinforce的方法来更新策略函数 π \pi π

    θ t + 1 = θ t + a δ t ∇ θ [ ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + a\delta_t\nabla _{\theta}[\nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1=θt+aδtθ[θl(as,θ)]

  • critic:更新值

    1、我们采用优化td-error的方法来更新状态值 v v v w k + 1 = w k − α ∇ w [ v ( s t , w ) − v ^ ( s t , w ) ] 2 \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w[ v(s_{t},w) -\hat v(s_{t},w)]^2 \end{align*} wk+1=wkαw[v(st,w)v^(st,w)]2

    2、在这里,使用实际发生的discount reward来估算 v ( s t , w ) v(s_{t},w) v(st,w)

    3、 w k + 1 = w k − α ∇ w [ R − v ^ ( s t , w ) ] 2 \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w[R -\hat v(s_{t},w)]^2 \end{align*} wk+1=wkαw[Rv^(st,w)]2

torch实现步骤

第一步

  1. 初始化A2CNet,使其返回策略函数pi(s, a),和价值V(s)
import collections
import copy
import math
import random
import time
from collections import defaultdictimport gym
import gym.spaces
import numpy as np
import torch
import torch.nn as nn
import torch.nn.utils as nn_utils
import torch.optim as optim
from gym.envs.toy_text import frozen_lake
from torch.utils.tensorboard import SummaryWriterclass A2CNet(nn.Module):def __init__(self, obs_size, hidden_size, q_table_size):super().__init__()# 策略函数pi(s, a)self.policy_net = nn.Sequential(nn.Linear(obs_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, q_table_size),nn.Softmax(dim=1),)# 价值V(s)self.v_net = nn.Sequential(nn.Linear(obs_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, 1),)def forward(self, state):if len(torch.Tensor(state).size()) == 1:state = state.reshape(1, -1)return self.policy_net(state), self.v_net(state)

第二步

  1. 使用当前策略πθ在环境中交互N步,并保存状态(st)、动作(at)和奖励(rt)
  2. 如果片段到达结尾,则R=0,否则为Vθ(st),这里采用环境产生的R来近似。
def discount_reward(R, gamma):# r 为历史得分n = len(R)dr = 0for i in range(n):dr += gamma**i * R[i]return drdef generate_episode(env, n_steps, net, gamma, predict=False):episode_history = dict()r_list = []for _ in range(n_steps):episode = []predict_reward = []state, info = env.reset()while True:p, v = net(torch.Tensor(state))p = p.detach().numpy().reshape(-1)action = np.random.choice(list(range(env.action_space.n)), p=p)next_state, reward, terminated, truncted, info = env.step(action)# 如果截断,则展开 v(state) = r + gamma*v(next_state)if truncted and not terminated:reward = reward + gamma * float(net(torch.Tensor(next_state))[1].detach())episode.append([state, action, next_state, reward, terminated])predict_reward.append(reward)state = next_stateif terminated or truncted:episode_history[_] = episoder_list.append(len(episode))episode = []predict_reward = []breakif predict:return np.mean(r_list)return episode_historydef calculate_t_discount_reward(reward_list, gamma):discount_reward = []total_reward = 0for i in reward_list[::-1]:total_reward = total_reward * gamma + idiscount_reward.append(total_reward)return discount_reward[::-1]

第三步

  1. 累积策略梯度 θ t + 1 = θ t + a δ t ∇ θ [ ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + a\delta_t\nabla _{\theta}[\nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1=θt+aδtθ[θl(as,θ)]

  2. 累积价值梯度
    w k + 1 = w k − α ∇ w [ R − v ^ ( s t , w ) ] 2 \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w[R -\hat v(s_{t},w)]^2 \end{align*} wk+1=wkαw[Rv^(st,w)]2

# actor策略损失函数
def loss(net, batch, gamma, entropy_beta=False):l = 0for episode in batch.values():reward_list = [reward for state, action, next_state, reward, terminated in episode]state = [state for state, action, next_state, reward, terminated in episode]action = [action for state, action, next_state, reward, terminated in episode]# actor策略损失函数## max entropyqt = calculate_t_discount_reward(reward_list, gamma)pi = net(torch.Tensor(state))[0]entropy_loss = -torch.sum((pi * torch.log(pi)), axis=1).mean() * entropy_betapi = pi.gather(dim=1, index=torch.LongTensor(action).reshape(-1, 1))l_policy = -torch.Tensor(qt) @ torch.log(pi)if entropy_beta:l_policy -= entropy_loss# critic损失函数critic_loss = nn.MSELoss()(net(torch.Tensor(state))[1].reshape(-1), torch.Tensor(qt))l += l_policy + critic_lossreturn l / len(batch.values())

训练

## 初始化环境
env = gym.make("CartPole-v1", max_episode_steps=200)
# env = gym.make("CartPole-v1", render_mode = "human")state, info = env.reset()obs_n = env.observation_space.shape[0]
hidden_num = 64
act_n = env.action_space.n
a2c = A2CNet(obs_n, hidden_num, act_n)# 定义优化器
opt = optim.Adam(a2c.parameters(), lr=0.01)# 记录
writer = SummaryWriter(log_dir="logs/PolicyGradient/A2C", comment="test1")epochs = 200
batch_size = 20
gamma = 0.9
entropy_beta = 0.01
# 避免梯度太大
CLIP_GRAD = 0.1for epoch in range(epochs):batch = generate_episode(env, batch_size, a2c, gamma)l = loss(a2c, batch, gamma, entropy_beta)# 反向传播opt.zero_grad()l.backward()# 梯度裁剪nn_utils.clip_grad_norm_(a2c.parameters(), CLIP_GRAD)opt.step()max_steps = generate_episode(env, 10, a2c, gamma, predict=True)writer.add_scalars("Loss",{"loss": l.item(), "max_steps": max_steps},epoch,)print("epoch:{},  Loss: {}, max_steps: {}".format(epoch, l.detach(), max_steps))

结果

在这里插入图片描述
可以看到,对比上一节的几种方法,收敛速度和收敛方向都稳定了不少。

Ref

[1] Mathematical Foundations of Reinforcement Learning,Shiyu Zhao
[2] 深度学习强化学习实践(第二版),Maxim Lapan

这篇关于强化学习原理python篇08——actor-critic的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670824

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚