强化学习原理python篇08——actor-critic

2024-02-02 13:20

本文主要是介绍强化学习原理python篇08——actor-critic,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习原理python篇08——actor-critic

  • 前置知识
    • TD Error
    • REINFORCE
    • QAC
    • Advantage actor-critic (A2C)
  • torch实现步骤
    • 第一步
    • 第二步
    • 第三步
    • 训练
    • 结果
  • Ref

本章全篇参考赵世钰老师的教材 Mathmatical-Foundation-of-Reinforcement-Learning Actor-Critic Methods 章节,请各位结合阅读,本合集只专注于数学概念的代码实现。

前置知识

TD Error

如果用 v ^ ( s , w ) \hat v(s,w) v^(s,w)代表状态值函数,则TD Error表示为
r t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) r_{t+1}+\gamma \hat v(s_{t+1},w) -\hat v(s_{t},w) rt+1+γv^(st+1,w)v^(st,w)

令损失函数
J w = E [ v ( s t ) − v ^ ( s t , w ) ] 2 J_w = E[ v(s_{t}) -\hat v(s_{t},w)]^2 Jw=E[v(st)v^(st,w)]2

则利用梯度下降法最小化 J θ J_\theta Jθ
w k + 1 = w k − α ∇ w J ( w k ) = w k − α [ − 2 E ( [ r t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) ] ) ] ∇ w v ^ ( s t , w ) ) \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w J(w_k)\\ =& w_k -\alpha[-2E([r_{t+1}+\gamma \hat v(s_{t+1},w) -\hat v(s_{t},w)])]\nabla_w \hat v(s_{t},w)) \end{align*} wk+1==wkαwJ(wk)wkα[2E([rt+1+γv^(st+1,w)v^(st,w)])]wv^(st,w))

用随机梯度来估算,则最小化 J θ J_\theta Jθ
w k + 1 = w k − α ∇ w J ( w k ) = w k + α [ r t + 1 + γ v ^ ( s t + 1 , w ) − v ^ ( s t , w ) ] ∇ w v ^ ( s t , w ) ) = w k + α [ v ( s t ) − v ^ ( s t , w ) ] ∇ w v ^ ( s t , w ) ) \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w J(w_k)\\ =& w_k +\alpha[r_{t+1}+\gamma \hat v(s_{t+1},w) -\hat v(s_{t},w)]\nabla_w \hat v(s_{t},w))\\ =& w_k +\alpha[ v(s_{t}) -\hat v(s_{t},w)]\nabla_w \hat v(s_{t},w))\\ \end{align*} wk+1===wkαwJ(wk)wk+α[rt+1+γv^(st+1,w)v^(st,w)]wv^(st,w))wk+α[v(st)v^(st,w)]wv^(st,w))

对于q—value来说,
w k + 1 = w k − α ∇ w J ( w k ) = w k + α [ r t + 1 + γ q ^ ( s t + 1 , a t + 1 , w ) − q ^ ( s t , a t , w ) ] ∇ w q ^ ( s t , a t , w ) ) \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w J(w_k)\\ =& w_k +\alpha[r_{t+1}+\gamma \hat q(s_{t+1}, a_{t+1},w) -\hat q(s_{t}, a_{t},w)]\nabla_w \hat q(s_{t},a_{t},w))\\ \end{align*} wk+1==wkαwJ(wk)wk+α[rt+1+γq^(st+1,at+1,w)q^(st,at,w)]wq^(st,at,w))

REINFORCE

参考上一节

θ t + 1 = θ t + ∇ θ J ( θ t ) = θ t + ∇ θ E S − d , a − π ( S , Θ ) [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + \nabla _{\theta}J(θ_t)\\=& θ_{t} + \nabla _{\theta}E_{S-d,a-\pi(S,\Theta)}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1==θt+θJ(θt)θt+θESd,aπ(S,Θ)[q(s,a)θl(as,θ)]
一般来说, ∇ θ l n π ( a ∣ s , θ ) \nabla _{\theta}ln\pi(a|s,\theta) θl(as,θ)是未知的,可以用随机梯度法来估计,则
θ t + 1 = θ t + ∇ θ J ( θ t ) = θ t + ∇ θ [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + \nabla _{\theta}J(θ_t)\\=& θ_{t} + \nabla _{\theta}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1==θt+θJ(θt)θt+θ[q(s,a)θl(as,θ)]

QAC

The simplest actor-critic algorithm

  • actor:更新策略

    我们采用reinforce的方法来更新策略函数 π \pi π θ t + 1 = θ t + ∇ θ [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + \nabla _{\theta}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1=θt+θ[q(s,a)θl(as,θ)]

  • critic:更新值

    我们采用优化td-error的方法来更新行动值 q q q
    w k + 1 = w k + α [ r t + 1 + γ q ^ ( s t + 1 , a t + 1 , w ) − q ^ ( s t , a t , w ) ] ∇ w q ^ ( s t , a t , w ) ) \begin{align*} w_{k+1} =& w_k +\alpha[r_{t+1}+\gamma \hat q(s_{t+1}, a_{t+1},w) -\hat q(s_{t}, a_{t},w)]\nabla_w \hat q(s_{t},a_{t},w)) \end{align*} wk+1=wk+α[rt+1+γq^(st+1,at+1,w)q^(st,at,w)]wq^(st,at,w))

Advantage actor-critic (A2C)

减小方差的下一步是使基线与状态相关(这是一个好主意,因为不同的状态可能具有非常不同的基线)。确实,要决定某个特定动作在某种状态下的适用性,我们会使用该动作的折扣总奖励。但是,总奖励本身可以表示为状态的价值加上动作的优势值:Q(s,a)=V(s)+A(s,a)(参见DuelingDQN)。

知道每个状态的价值(至少有一个近似值)后,我们就可以用它来计算策略梯度并更新策略网络,以增加具有良好优势值的动作的执行概率,并减少具有劣势优势值的动作的执行概率。策略网络(返回动作的概率分布)被称为行动者(actor),因为它会告诉我们该做什么。另一个网络称为评论家(critic),因为它能使我们了解自己的动作有多好。这种改进有一个众所周知的名称,即advantage actorcritic方法,通常被简称为A2C。
E S − d , a − π ( S , Θ ) [ q ( s , a ) ∇ θ l n π ( a ∣ s , θ ) ] = E S − d , a − π ( S , Θ ) [ ∇ θ l n π ( a ∣ s , θ ) [ q ( s , a ) − v ( s ) ] ] E_{S-d,a-\pi(S,\Theta)}[q(s,a) \nabla _{\theta}ln\pi(a|s,\theta)]=E_{S-d,a-\pi(S,\Theta)}[\nabla _{\theta}ln\pi(a|s,\theta)[q(s,a) -v(s)]] ESd,aπ(S,Θ)[q(s,a)θl(as,θ)]=ESd,aπ(S,Θ)[θl(as,θ)[q(s,a)v(s)]]

  • Advantage(TD error)

    δ t = r t + 1 + γ v ( s t + 1 ; w t ) − v ( s t ; w t ) \delta_t =r_{t+1}+\gamma v(s_{t+1};w_t)- v(s_t;w_t) δt=rt+1+γv(st+1;wt)v(st;wt)

  • actor:更新策略

    我们采用reinforce的方法来更新策略函数 π \pi π

    θ t + 1 = θ t + a δ t ∇ θ [ ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + a\delta_t\nabla _{\theta}[\nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1=θt+aδtθ[θl(as,θ)]

  • critic:更新值

    1、我们采用优化td-error的方法来更新状态值 v v v w k + 1 = w k − α ∇ w [ v ( s t , w ) − v ^ ( s t , w ) ] 2 \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w[ v(s_{t},w) -\hat v(s_{t},w)]^2 \end{align*} wk+1=wkαw[v(st,w)v^(st,w)]2

    2、在这里,使用实际发生的discount reward来估算 v ( s t , w ) v(s_{t},w) v(st,w)

    3、 w k + 1 = w k − α ∇ w [ R − v ^ ( s t , w ) ] 2 \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w[R -\hat v(s_{t},w)]^2 \end{align*} wk+1=wkαw[Rv^(st,w)]2

torch实现步骤

第一步

  1. 初始化A2CNet,使其返回策略函数pi(s, a),和价值V(s)
import collections
import copy
import math
import random
import time
from collections import defaultdictimport gym
import gym.spaces
import numpy as np
import torch
import torch.nn as nn
import torch.nn.utils as nn_utils
import torch.optim as optim
from gym.envs.toy_text import frozen_lake
from torch.utils.tensorboard import SummaryWriterclass A2CNet(nn.Module):def __init__(self, obs_size, hidden_size, q_table_size):super().__init__()# 策略函数pi(s, a)self.policy_net = nn.Sequential(nn.Linear(obs_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, q_table_size),nn.Softmax(dim=1),)# 价值V(s)self.v_net = nn.Sequential(nn.Linear(obs_size, hidden_size),nn.ReLU(),nn.Linear(hidden_size, 1),)def forward(self, state):if len(torch.Tensor(state).size()) == 1:state = state.reshape(1, -1)return self.policy_net(state), self.v_net(state)

第二步

  1. 使用当前策略πθ在环境中交互N步,并保存状态(st)、动作(at)和奖励(rt)
  2. 如果片段到达结尾,则R=0,否则为Vθ(st),这里采用环境产生的R来近似。
def discount_reward(R, gamma):# r 为历史得分n = len(R)dr = 0for i in range(n):dr += gamma**i * R[i]return drdef generate_episode(env, n_steps, net, gamma, predict=False):episode_history = dict()r_list = []for _ in range(n_steps):episode = []predict_reward = []state, info = env.reset()while True:p, v = net(torch.Tensor(state))p = p.detach().numpy().reshape(-1)action = np.random.choice(list(range(env.action_space.n)), p=p)next_state, reward, terminated, truncted, info = env.step(action)# 如果截断,则展开 v(state) = r + gamma*v(next_state)if truncted and not terminated:reward = reward + gamma * float(net(torch.Tensor(next_state))[1].detach())episode.append([state, action, next_state, reward, terminated])predict_reward.append(reward)state = next_stateif terminated or truncted:episode_history[_] = episoder_list.append(len(episode))episode = []predict_reward = []breakif predict:return np.mean(r_list)return episode_historydef calculate_t_discount_reward(reward_list, gamma):discount_reward = []total_reward = 0for i in reward_list[::-1]:total_reward = total_reward * gamma + idiscount_reward.append(total_reward)return discount_reward[::-1]

第三步

  1. 累积策略梯度 θ t + 1 = θ t + a δ t ∇ θ [ ∇ θ l n π ( a ∣ s , θ ) ] \begin {align*} θ_{t+1} =& θ_{t} + a\delta_t\nabla _{\theta}[\nabla _{\theta}ln\pi(a|s,\theta)] \end {align*} θt+1=θt+aδtθ[θl(as,θ)]

  2. 累积价值梯度
    w k + 1 = w k − α ∇ w [ R − v ^ ( s t , w ) ] 2 \begin{align*} w_{k+1} =& w_k -\alpha\nabla_w[R -\hat v(s_{t},w)]^2 \end{align*} wk+1=wkαw[Rv^(st,w)]2

# actor策略损失函数
def loss(net, batch, gamma, entropy_beta=False):l = 0for episode in batch.values():reward_list = [reward for state, action, next_state, reward, terminated in episode]state = [state for state, action, next_state, reward, terminated in episode]action = [action for state, action, next_state, reward, terminated in episode]# actor策略损失函数## max entropyqt = calculate_t_discount_reward(reward_list, gamma)pi = net(torch.Tensor(state))[0]entropy_loss = -torch.sum((pi * torch.log(pi)), axis=1).mean() * entropy_betapi = pi.gather(dim=1, index=torch.LongTensor(action).reshape(-1, 1))l_policy = -torch.Tensor(qt) @ torch.log(pi)if entropy_beta:l_policy -= entropy_loss# critic损失函数critic_loss = nn.MSELoss()(net(torch.Tensor(state))[1].reshape(-1), torch.Tensor(qt))l += l_policy + critic_lossreturn l / len(batch.values())

训练

## 初始化环境
env = gym.make("CartPole-v1", max_episode_steps=200)
# env = gym.make("CartPole-v1", render_mode = "human")state, info = env.reset()obs_n = env.observation_space.shape[0]
hidden_num = 64
act_n = env.action_space.n
a2c = A2CNet(obs_n, hidden_num, act_n)# 定义优化器
opt = optim.Adam(a2c.parameters(), lr=0.01)# 记录
writer = SummaryWriter(log_dir="logs/PolicyGradient/A2C", comment="test1")epochs = 200
batch_size = 20
gamma = 0.9
entropy_beta = 0.01
# 避免梯度太大
CLIP_GRAD = 0.1for epoch in range(epochs):batch = generate_episode(env, batch_size, a2c, gamma)l = loss(a2c, batch, gamma, entropy_beta)# 反向传播opt.zero_grad()l.backward()# 梯度裁剪nn_utils.clip_grad_norm_(a2c.parameters(), CLIP_GRAD)opt.step()max_steps = generate_episode(env, 10, a2c, gamma, predict=True)writer.add_scalars("Loss",{"loss": l.item(), "max_steps": max_steps},epoch,)print("epoch:{},  Loss: {}, max_steps: {}".format(epoch, l.detach(), max_steps))

结果

在这里插入图片描述
可以看到,对比上一节的几种方法,收敛速度和收敛方向都稳定了不少。

Ref

[1] Mathematical Foundations of Reinforcement Learning,Shiyu Zhao
[2] 深度学习强化学习实践(第二版),Maxim Lapan

这篇关于强化学习原理python篇08——actor-critic的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670824

相关文章

一文全面详解Python变量作用域

《一文全面详解Python变量作用域》变量作用域是Python中非常重要的概念,它决定了在哪里可以访问变量,下面我将用通俗易懂的方式,结合代码示例和图表,带你全面了解Python变量作用域,需要的朋友... 目录一、什么是变量作用域?二、python的四种作用域作用域查找顺序图示三、各作用域详解1. 局部作

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python远程控制MySQL的完整指南

《Python远程控制MySQL的完整指南》MySQL是最流行的关系型数据库之一,Python通过多种方式可以与MySQL进行交互,下面小编就为大家详细介绍一下Python操作MySQL的常用方法和最... 目录1. 准备工作2. 连接mysql数据库使用mysql-connector使用PyMySQL3.

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau