他用几个公式解释了现金贷业务的风控与运营 (下) 2017-09-18 22:04 风控/运营/违约 “金额如此小的业务,成本极度敏感,刚开始的时候我们在数据成本和坏账成本之间特别纠结。” 以上是许

本文主要是介绍他用几个公式解释了现金贷业务的风控与运营 (下) 2017-09-18 22:04 风控/运营/违约 “金额如此小的业务,成本极度敏感,刚开始的时候我们在数据成本和坏账成本之间特别纠结。” 以上是许,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

他用几个公式解释了现金贷业务的风控与运营 (下)

“金额如此小的业务,成本极度敏感,刚开始的时候我们在数据成本和坏账成本之间特别纠结。”

以上是许多朋友现金贷业务的真实感受。在这一章中,我不打算像上一章那样做很多计算,我们聊聊关于a%(新贷客户损失率)及它的影响因素还有风控上如何掐头去尾取中间的事儿。

我们先来看下损失率是什么和如何界定,然后我们再探讨影响因素都有哪些。

一、关于新贷客户违约率

先看张图:

这是笔者截取的一份数据,内容是某个业务月的应还款新贷、续贷及汇总客户的逾期变化趋势、截取至逾期60天、续贷客户占比为60%。

在实际业务中我们会发现,新贷客户逾期率高、续贷客户逾期率低、汇总值居于两者之间、这个图更直观的解释了我们的公式一。

再来统一下关于逾期率损失率的口径:

简单来说,我们的业务面临的损失率实际上是在某业务月过完后,一批应还款客户中达到我们界定为损失的逾期天数的账户数或者金额,在这段还款周期内所占的比率。根据业务口径不同,可以是30、60、90或者更长,最粗暴的认定方法是在哪个时间点开始你基本催不回来了,那高于这个时间点的你就算成损失好了。

对逾期率、损失率的算法视角如图:

上述表格中的即期跟延期算法都可以看出,在业务平稳增长的阶段内,我们会发现即期指标跟延期指标是接近的,但是在每月业务大幅增长的时候,即期指标会显得过小,延期指标的算法这时则更容易反映业务“质量”,所以本文探讨这些指标时所说的逾期30天以上,一般是以逾期30天以上的账户数为分子、30天前对应的应还款账户数为分母统计的。

影响新贷客户损失率的指标(这里我胡写了个公式……):

P(新贷客户损失率)=[P(欺诈)+P(过度多头借贷)+P(不想还)+P(看起来可以不还)]*P(系统抽风的概率)*P(规则懵了的概率)

但是意思是对的,其实一群新贷客户的违约率取决于这个人群的违约率本身与现金贷系统识别能力的相互作用。

除了这里列明的,现金贷新贷客户的损失率跟申请及放款后的还款教育、短信提醒、还款前的早期提醒、用户对于还款后再借的“口子稳定程度”的心理预期、客服态度、催收压力等也有不小的关系。

欺诈受产品欺诈成本的影响,比如我们使用人脸识别或者在申请过程中强制实名或银行卡鉴权,都会在形式上提高欺诈成本,在业务早期我们需要通过细致的反欺诈规则来实现,在业务中期数据丰富后我们需要补充关系反欺诈,如共用设备、共用申请手机等简单规则,以及通过图算法实现一些风险标签传播。

二、简单的几个示例

1.三个人共用设备

2.多个人共用手机号

3.典型团贷风险

过度多头借贷并不是一个无法识别到的信息,过度的多头借贷一定会导致用户最终的偿还能力出现问题,但是客户能跟其他家借到钱有的时候是“利于”拆东补西的,这里我们也会发现一个问题----现金贷客户中那些跟固定的几家机构借钱的用户的违约率和最终彻底陷入恶性债务螺旋的比例要比那些无节制的撸口子的用户小的多。

看起来可以不还这个事情其实对于我们的产品来说有时候不受关注但又很重要,我个人一直认为借款应该是有门槛,并且让客户切实“感觉”是有一定的难度和压力的事情,过度的考虑客户的体验,反而让客户感觉借到钱太容易,而“看起来可以不还”,跟多家机构的沟通和对比后我们发现,提示和一些强制措施并没有严重降低用户发起借款申请的转化率。或许,借得到钱才是最好的体验。

三、关于掐头去尾取中间

其实现金贷业务针对新贷客户主要的风控动作可以归结为“掐头去尾取中间”。

① 去尾的能力是业务早期启动及隔离风险的核心能力,0-1必须做好

② 掐头的能力是决定业务如何快速走通和迭代的核心能力,0-1-30阶段必须做好

③ 取中间的能力是业务发展过程中的核心能力,往往是30-60阶段才要花大精力做好的的事情

去尾的能力在业务风控中最典型的做法是通过“规则”实现,如反欺诈规则、风险评判规则、黑名单规则。掐头的能力在风控中早期往往通过“人”来实现,也有机构是规则拒绝后就通过的,会在积累了一定的用户表现后通过机器学习等方法训练模型来获得提升。当通过模型训练完成建模后,我们就可以通过不断的迭代模型和调整cutoff的节点来解决取中间的问题。

文章来源:公众号“放得出去收得回来”

这篇关于他用几个公式解释了现金贷业务的风控与运营 (下) 2017-09-18 22:04 风控/运营/违约 “金额如此小的业务,成本极度敏感,刚开始的时候我们在数据成本和坏账成本之间特别纠结。” 以上是许的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670815

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类