基于Keras搭建cifar10数据集训练预测Pipeline

2024-02-02 11:38

本文主要是介绍基于Keras搭建cifar10数据集训练预测Pipeline,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于Keras搭建cifar10数据集训练预测Pipeline

钢笔先生关注

0.5412019.01.17 22:52:05字数 227阅读 500

Pipeline

本次训练模型的数据直接使用Keras.datasets.cifar10.load_data()得到,模型建立是通过Sequential搭建。

重点思考的内容是如何应用训练过的模型进行实际预测,里面牵涉到一些细节,需要注意。同时,Keras提供的ImageDataGenerator为模型训练时提供数据输入,之前有总结过这个类,并给出了从文件系统中加载原始图片数据的方法。

模型搭建

from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import os# 指定超参数
batch_size = 32
num_classes = 10
epochs = 50
data_augmentation = True # 数据增强
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_cifar10_trained_model.h5'# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)# 搭建模型
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy'])x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255# 如果不用模型增强
if not data_augmentation:print('Not using data augmentation.')model.fit(x_train, y_train,batch_size=batch_size,epochs=epochs,validation_data=(x_test, y_test),shuffle=True)# 使用模型增强
else:print('Using real-time data augmentation.')# This will do preprocessing and realtime data augmentation:datagen = ImageDataGenerator(featurewise_center=False,  # set input mean to 0 over the datasetsamplewise_center=False,  # set each sample mean to 0featurewise_std_normalization=False,  # divide inputs by std of the datasetsamplewise_std_normalization=False,  # divide each input by its stdzca_whitening=False,  # apply ZCA whiteningzca_epsilon=1e-06,  # epsilon for ZCA whiteningrotation_range=0,  # randomly rotate images in the range (degrees, 0 to 180)# randomly shift images horizontally (fraction of total width)width_shift_range=0.1,# randomly shift images vertically (fraction of total height)height_shift_range=0.1,shear_range=0.,  # set range for random shearzoom_range=0.,  # set range for random zoomchannel_shift_range=0.,  # set range for random channel shifts# set mode for filling points outside the input boundariesfill_mode='nearest',cval=0.,  # value used for fill_mode = "constant"horizontal_flip=True,  # randomly flip imagesvertical_flip=False,  # randomly flip images# set rescaling factor (applied before any other transformation)rescale=None,# set function that will be applied on each inputpreprocessing_function=None,# image data format, either "channels_first" or "channels_last"data_format=None,# fraction of images reserved for validation (strictly between 0 and 1)validation_split=0.0)# Compute quantities required for feature-wise normalization# (std, mean, and principal components if ZCA whitening is applied).datagen.fit(x_train)# Fit the model on the batches generated by datagen.flow().history = model.fit_generator(datagen.flow(x_train, y_train,batch_size=batch_size),epochs=epochs,steps_per_epoch = 600,validation_data=(x_test, y_test),validation_steps = 10,workers=4)# Save model and weights
if not os.path.isdir(save_dir):os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])

训练完毕后,模型保存为:keras_cifar10_trained_model.h5

使用预训练模型

# 使用已经训练好的参数来加载模型from keras.models import load_modelmodel = load_model('./saved_models/keras_cifar10_trained_model.h5')model.summary()'''
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_9 (Conv2D)            (None, 32, 32, 32)        896       
_________________________________________________________________
activation_13 (Activation)   (None, 32, 32, 32)        0         
_________________________________________________________________
conv2d_10 (Conv2D)           (None, 30, 30, 32)        9248      
_________________________________________________________________
activation_14 (Activation)   (None, 30, 30, 32)        0         
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 15, 15, 32)        0         
_________________________________________________________________
dropout_7 (Dropout)          (None, 15, 15, 32)        0         
_________________________________________________________________
conv2d_11 (Conv2D)           (None, 15, 15, 64)        18496     
_________________________________________________________________
activation_15 (Activation)   (None, 15, 15, 64)        0         
_________________________________________________________________
conv2d_12 (Conv2D)           (None, 13, 13, 64)        36928     
_________________________________________________________________
activation_16 (Activation)   (None, 13, 13, 64)        0         
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 (None, 6, 6, 64)          0         
_________________________________________________________________
dropout_8 (Dropout)          (None, 6, 6, 64)          0         
_________________________________________________________________
flatten_3 (Flatten)          (None, 2304)              0         
_________________________________________________________________
dense_5 (Dense)              (None, 512)               1180160   
_________________________________________________________________
activation_17 (Activation)   (None, 512)               0         
_________________________________________________________________
dropout_9 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_6 (Dense)              (None, 10)                5130      
_________________________________________________________________
activation_18 (Activation)   (None, 10)                0         
=================================================================
Total params: 1,250,858
Trainable params: 1,250,858
Non-trainable params: 0
'''

识别测试集图片

lst= ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
def onehot_to_label(res):label = ''for i in range(len(res[0])):if res[0][i] == 1:label = lst[i]return labeldef softmax_to_label(res):label = ''index = res[0].argmax()label = lst[index]return label# 识别测试集图片
test_image = x_test[100].reshape([1,32,32,3])
test_image.shape
res = model.predict(test_image)
label = softmax_to_label(res)
print(label)

本地加载图片识别

# 自己加载raw image进行识别
from PIL import Image
from keras.preprocessing.image import img_to_array
import numpy as npimage = Image.open('./images/airplane.jpeg') # 加载图片
image = image.resize((32,32))
image = img_to_array(image)# 加载进来之后开始预测
image = image.reshape([1,32,32,3]) # 需要reshape到四维张量才行
res = model.predict(image)
label = softmax_to_label(res)
print("The image is: ", label)# 或者整合为一个函数
def image_to_array(path):image = Image.open(path)image = image.resize((32,32),Image.NEAREST) # 会将图像整体缩放到指定大小,不是裁剪image = img_to_array(image) # 变成数组image = image.reshape([1,32,32,3]) # reshape到4维张量return image

使用时注意到输入到网络的数据是张量,且需要reshape到四维,因为按照批量往里输入的时候,也是四维,单独输入一张图片,使用方式相同。

这篇关于基于Keras搭建cifar10数据集训练预测Pipeline的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670585

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

如何使用Haporxy搭建Web群集

《如何使用Haporxy搭建Web群集》Haproxy是目前比较流行的一种群集调度工具,同类群集调度工具有很多如LVS和Nginx,本案例介绍使用Haproxy及Nginx搭建一套Web群集,感兴趣的... 目录一、案例分析1.案例概述2.案例前置知识点2.1 HTTP请求2.2 负载均衡常用调度算法 2.

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热