重庆市A股上市公司年度财务分析数据爬取

2024-02-02 10:30

本文主要是介绍重庆市A股上市公司年度财务分析数据爬取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.重庆市A股上市公司基本情况

由《重庆上市公司发展报告(2021)》显示,截至12月7日,重庆境内外上市公司数量已达80家。其中,境内上市公司62家,境外上市公司21家(长安汽车为A+B股上市企业,渝农商行、重庆钢铁为A+H股上市企业)。A股上市公司有58家,民营企业有28家,占比48.28%,国有企业24家占比41.38%,还有2家外资企业、2家公众企业、1家其他企业,总达市值1.18万亿,见表1,主要行业包括电子信息、汽车及零部件、高端装备、新材料、生物医药、特色消费品、农副食品等,主要分布见图1。

表 1 重庆市A股上市公司地域分布数据

所在区

经度

纬度

上市公司\家

江北区

106.57

29.6

11

渝北区

106.63

29.72

8

渝中区

106.57

29.55

6

涪陵区

107.4

29.72

5

北碚区

106.4

29.8

5

九龙坡区

106.5

29.5

4

长寿区

107.08

29.87

3

南岸区

106.57

29.52

3

巴南区

106.52

29.38

3

江津区

106.26

29.29

2

璧山区

106.23

29.59

2

万州区

108.4

30.82

1

大渡口区

106.48

29.48

1

合川区

106.27

29.97

1

荣昌区

105.58

29.4

1

垫江县

107.35

30.33

1

图 1 重庆市58家A股上市公司地域位置分布

2.指标的选取

 为了全面真实地反映重庆市A股上市公司综合财务质量的基本情况,本文在收集数据时主要考虑了以下4个方面本文的一级指标:主要经济、盈利能力、偿债能力和成本费用等。每个方面有若干个二级指标数据,一共22个二级指标。利用python爬取重庆上市公司名单-重庆上市公司名录-重庆上市公司大全-商业计划书-可研报告-中商产业研究院数据库-中商情报网上58家A股上市公司的数据

 需要注意的是,要点击每个公司,然后在另一个网页的财务分析(年度)上获取每个指标的数据,如点击渝开发,弹出下一个网页

 在左侧栏目找到财务分析(年度)点击,

注意3次点击网址是不一样,而财务分析(年度)这个网址是我们爬取数据的关键网址。下面展示代码

import requests
from lxml import etree
import time
import pandas as pd
from selenium.webdriver import Chrome
from selenium.webdriver.common.keys import Keys
import time
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Optionsurl='https://s.askci.com/stock/a-0-cc0000001429/1/'
opt=Options()
#反爬
opt.add_experimental_option('excludeSwitches', ['enable-automation'])
#无头浏览器
opt.add_argument("--headless")
opt.add_argument("--disable-gpu")
web=Chrome(options=opt)
web.get(url)
stock_list=web.find_elements(By.XPATH,'//*[@id="ResultUl"]/tr/td[2]/a')
stock_code=[]
for code in stock_list:stock_code.append(code.text)#拿到了上市公司的
el=web.find_element(By.XPATH,'//*[@id="kkpager"]/div[1]/span[1]/a[1]')
el.click()
# stock_list1=web.find_elements(By.XPATH,'//*[@id="ResultUl"]/tr/td[2]/a')
# for code in stock_list1:
#     stock_code.append(code.text)#拿到了上市公司的
stock_list1=web.find_elements(By.XPATH,'//*[@id="ResultUl"]/tr/td[2]/a')
for code in stock_list1:stock_code.append(code.text)#拿到了58个上市公司的股票代码
# el=web.find_element(By.XPATH,//*[@id="kkpager"]/div[1]/span[1]/a[1])
# el.click()
# //*[@id="ResultUl"]/tr[1]/td[2]/a
# //*[@id="ResultUl"]/tr[1]/td[2]/a
# //*[@id="ResultUl"]/tr[1]/td[3]/a
# //*[@id="ResultUl"]/tr[2]/td[3]/astock_code=pd.DataFrame(stock_code)
stock_code.columns=['股票代码']#https://s.askci.com/stock/financialanalysis/000514/
eco_name=[]
eco_data=[]
ope_name=[]
ope_data=[]
pay_name=[]
pay_data=[]
cost_name=[]
cost_data=[]
eco_table=[]
ope_table=[]
pay_table=[]
cost_table=[]
for stock in stock_code:url1='https://s.askci.com/stock/financialanalysis/'+stock+'/'opt=Options()opt.add_experimental_option('excludeSwitches', ['enable-automation'])opt.add_argument("--headless")opt.add_argument("--disable-gpu")web=Chrome(options=opt)web.get(url1)print('股票代码{}已打开'.format(stock))
#     web.current_window_handle  # 获取当前窗口
#     web.window_handles    # 获取所有窗口
#     web.switch_to_window(-1)  time.sleep(5)table1=web.find_element(By.XPATH,"//div[@class='right_f_com']//div[2]//table[1]")eco_list=table1.find_elements(By.TAG_NAME,'tr')for eco in eco_list:eco_table.append(eco.text)eco_n=eco_table[0]#主要经济指标的列名包括年份eco_d=eco_table[-1]#主要经济指标的数据eco_name.append(eco_n)eco_data.append(eco_d)time.sleep(1)#拿营业能力指标/盈利能力table2=web.find_element(By.XPATH,"//div[@class='right_f_com']//div[4]//table[1]")ope_list=table2.find_elements(By.TAG_NAME,'tr')for ope in ope_list:ope_table.append(ope.text)    ope_n=ope_table[0]#主要经济指标的列名包括年份ope_d=ope_table[-1]#主要经济指标的数据ope_name.append(ope_n)ope_data.append(ope_d)time.sleep(1)#拿偿债能力指标table3=web.find_element(By.XPATH,"//div[@class='right_f_com']//div[6]//table[1]")pay_list=table3.find_elements(By.TAG_NAME,'tr')for pay in pay_list:pay_table.append(pay.text)    pay_n=pay_table[0]#主要经济指标的列名包括年份pay_d=pay_table[-1]#主要经济指标的数据pay_name.append(pay_n)pay_data.append(pay_d)time.sleep(1)#拿成本费用指标table4=web.find_element(By.XPATH,"//div[@class='right_f_com']//div[8]//table[1]")cost_list=table4.find_elements(By.TAG_NAME,'tr')for cost in cost_list:cost_table.append(cost.text)    cost_n=cost_table[0]#主要经济指标的列名包括年份cost_d=cost_table[-1]#主要经济指标的数据cost_name.append(cost_n)cost_data.append(cost_d)time.sleep(1)print('股票代码{}已运结束'.format(stock))web.close()time.sleep(5)
print('运行完毕')    

以上是咱们把58个上司公司对应指标的数据爬取了出来,接着需要将其数据进行整理,放入CSV中。代码如下

#将得到的数据去空格化,生成对应维度的数据,即样本数x特征数
def data_split(data):new_data=[]for i in range(len(data)):new_data.append(data[i].split(' ')) return new_dataeco_split=data_split(eco_data)#主要经济指标
ope_split=data_split(ope_data)#盈利能力,存货周转率为单位1,应收周转率单位为次,总资产周转率单位为次
pay_split=data_split(pay_data)#
cost_split=data_split(cost_data)#将亿和万转化成亿
def str2value(data):new_data=[]for i in range(len(data)):data_value=[]for value in data[i]:index_yi=value.find('亿')index_wan=value.find('万')index_missing=value.find('--')#缺失标记
#             index_wan_yi=value.find('万亿')if index_yi == -1 and index_wan == -1 and index_missing == -1:#把数字所谓的2020转换成数字2020value=int(value)if index_yi != -1 and index_wan != -1 and index_missing == -1:value=float(value[:index_wan])*10000#把万亿转换成亿if index_yi != -1 and index_wan == -1 and index_missing == -1:value=float(value[:index_yi])#把亿转换成亿if index_wan != -1 and index_yi == -1 and index_missing == -1:value=float(value[:index_wan])*(1e-4)#把万转化成单位为亿的数字if index_missing != -1 and index_yi == -1 and index_wan == -1:value=[]data_value.append(value)new_data.append(data_value)return new_data#主要经济指标的数据
eco=str2value(eco_split)
eco=pd.DataFrame(eco)
eco.columns=['年份','营业收入\亿元','营业利润\亿元','利润总额\亿元','净利润\亿元','资产总计\亿元','负债合计\亿元','股东权益合计\亿元']
print(eco.head())#处理营业能力的净资产收益率的百分号
#在索引为4列
#处理ope_split的
def percentage_num(data):new_data=[]for i in range(len(data)):data_value=[]for value in data[i]:index_percentage=value.find('%')#百分数标记index_point=value.find('.')#小数点标记index_missing=value.find('--')#缺失标记if index_percentage == -1 and index_point == -1 and index_missing ==-1:#转换整数value=int(value)if index_percentage != -1 and index_point !=-1 and index_missing ==-1:#转换百分比的数字value=float(value[:index_percentage])if index_point != -1 and index_percentage == -1 and index_missing ==-1:#转换浮点数value=float(value)if index_missing != -1 and index_percentage == -1 and index_point == -1:value=[]data_value.append(value)new_data.append(data_value)return new_data
#盈利能力(运营能力)
ope=percentage_num(ope_split)
ope=pd.DataFrame(ope)
ope.columns=['年份','销售毛利率\%','营业利润率\%','总资产利润率\%','净资产收益率\%','存货周转率','应收账款周转率\次','总资产周转率\次']
print(ope.head())#偿债能力
pay=percentage_num(pay_split)
pay=pd.DataFrame(pay)
pay.columns=['年份','资产负债率\%','股东权益比率\%','流动比率','速动比率']
print(pay.head())#成本能力
cost=str2value(cost_split)
cost=pd.DataFrame(cost)
cost.columns=['年份','营业成本\亿元','销售费用\亿元','管理费用\亿元','财务费用\亿元']
print(cost.head())
ope.drop(['年份'], axis = 1)
chongqing_A_stock_data=pd.concat([stock_code,eco.drop(['年份'], axis = 1),ope.drop(['年份'], axis = 1),pay.drop(['年份'], axis = 1),cost.drop(['年份'], axis = 1)],axis=1)
chongqing_A_stock_data.to_csv("./重庆A股上市公司.csv", mode='a', index=False, encoding="utf_8_sig")

这样咱们就把所有指标的数据爬取出来了。下面可以考虑通过一些分析方法如主成分分分析、因子分析对各个上市公司计算综合得分,进行质量评价。有空再写

这篇关于重庆市A股上市公司年度财务分析数据爬取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670415

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro