1929-2022年全球站点的逐月平均气温数据

2024-02-02 09:10

本文主要是介绍1929-2022年全球站点的逐月平均气温数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,其中又以气温指标最为常用!说到气温数据,最详细的气温数据是具体到气象监测站点的气温数据!本次我们为大家带来的就是具体到气象监测站点的数据——1929-2022年全球气象站点的逐月平均气温数据

原始数据来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI),原始数据以华氏度为单位,数据格式为csv,缺失数据用9999.9表示。为了方便大家使用,我们对原始数据进行了一些处理,包括:①气温单位转为摄氏度;②处理得到了shp和Exce两种数据格式;③对于excel格式,将缺失数据表示为空值,对于shp格式,缺失值依然用9999.9表示;④基于当月所有天数的气温通过求平均值得到月平均气温。该数据的其他重要信息包括数据坐标为GCS_WGS_1984,以2022年为例全球有12319个气象观测站点,具体的数据处理方式会在下文详细介绍!

以下为数据的详细介绍:

01 数据预览

该数据提供Shp和Excel两种数据格式,由于是逐月平均气温数据,又有94多个年份,数据条数非常多,难以将所有年份保存在一个文件中。我们将每一年的数据保存为一个Shp文件和一个Excel文件,一共有94个年份,也就是有94个Shp文件和94个Excel文件。

我们先来看一下Excel格式的数据,每个Excel文件中包含有该年12个月每月的全球所有气象站点的平均气温值。

数据字段包括气象观测站点的编号(STATION)气象观测站点的名称(NAME)、纬度(LATITUDE)经度(LONGITUDE)以及每月平均气温数据(例如2022-01)。我们以2022年气象观测站点的每月平均气温数据为例来预览一下:

接下来我们来看一下Shp格式的数据,同样每个Shp文件中都包含该年12个月每月的全球所有气象站点的平均气温。

Shp格式数据的具体属性和Excel数据相同,我们以2022年气象站点的每月平均气温数据为例来预览一下:

2022年12281个气象观测站点空间分布    

02 数据来源

数据来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI),网址为:https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/,包括了1929—2022年的气象数据,大家可以自己去该网站下载原始数据!

03 数据处理说明

1.合并处理:

从NCEI网站下载到的原始csv数据,每1个csv包含某个特定站点1年内所有的日均气温,按天记录,但并不全是365天,有的300多天,有的只有十几天。我们按照年份将每年涉及到的所有气象观测站点的每日平均气温数据进行合并处理,最终得到以年份命名的1929-2022年全球范围气象站点的逐日平均气温数据。

2.平均处理:

然后基于所有站点的逐日平均气温数值,我们求得每月所有天数的日均气温数据的平均值,以此分别得到所有站点的逐月平均气温数据!

3.单位换算:

将华氏度转化为摄氏度单位,数据处理公式为摄氏度 = (华氏度 - 32°F) ÷ 1.8进行换算。

4.空值处理:

原始csv数据中的缺失值用数字9999.9表示!在处理时,Excel格式文件用空值表示数据缺失;由于Shp文件会自动把空值识别为0,为区分空值与0度气温,Shp中仍保留数字9999.9表示数据缺失,特此说明!

5.站点数量说明:

每一年的站点数并不相同,基本是越新的年份全球气象站点数越多,2022年有12319个,早些年份的气象站点较少。有一点需要注意,对于缺失经纬度信息的站点,Excel中进行保留,其经纬度信息为空值。Shp中则将缺失经纬度信息的站点进行了删除。所以存在Excel和Shp中站点数量不一致的情况,例如2022年Shp中的站点个数为12281,Excel中的站点数量为12319。

文末下方是我们的公众号名片,我们将定期介绍各类城市数据以及数据的可视化和分析技术,有关1929-2022年全球站点的逐月平均气温数据的更多详情,欢迎大家多多关注我们进行了解!

这篇关于1929-2022年全球站点的逐月平均气温数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_63042008/article/details/130888832
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/670209

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模